
Université de Montréal

Sketch-Based Interactive Shape Deformation using
Shading Isophotes

par

Karl-Étienne Bolduc

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Informatique

Orientation Imagerie

31 Décembre 2023

© Karl-Étienne Bolduc, 2023

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Sketch-Based Interactive Shape
Deformation using Shading Isophotes

présenté par

Karl-Étienne Bolduc

a été évalué par un jury composé des personnes suivantes :

Noam Aigerman

(président-rapporteur)

Pierre Poulin

(directeur de recherche)

Mikhail Bessmeltsev

(codirecteur)

Bernhard Thomaszewski

(membre du jury)

Résumé

De plus en plus d’importance est accordée à la création d’objets 3D en raison des récents
essors technologiques. Il est donc crucial de fournir des outils appropriés et accessibles aux
utilisateurs de tous les horizons. Malheureusement, les outils traditionnellement utilisés en
création 3D sont conçus pour des professionnels, exigent des formations complexes et de
longue durée, et ne sont pas adaptés à ceux inexperimentés qui forment la vaste majorité des
utilisateurs potentiels.

Nous proposons un outil de création simplifié qui utilise des méthodes inspirées d’esquisses.
Dans un premier temps, le maillage désiré est créé à partir d’un contour tracé. L’intérieur
est gonflé suivant la méthode de Dvoroznak et al. [10]. Dans un deuxième temps, la hauteur
des sommets du maillage est manipulée en modifiant les courbes formées par l’ombrage.
Cet ombrage provient d’un modèle de réflexion Lambertien pour une lumière directionnelle
donnée.

Notre méthode consiste à utiliser les courbes formées par la méthode des charactéristiques
associée au problème de figure dérivée de l’ombre (Shape-From-Shading). Avec les courbes,
nous identifions les régions affectées par la modification de l’ombrage. L’une de ces régions
sera utilisée pour interpoler l’ombrage d’après la nouvelle isophote. À partir de ce nouvel
ombrage, les courbes de la méthode des characteristiques seront utilisées afin de trouver le
nouveau déplacement en s’assurant d’altérer uniquement la région affectée par le change-
ment dans l’ombrage. Les maillages créés peuvent ensuite être combinés suivant la méthode
proposée par Dvoroznak et al. [10] afin de former un maillage unique et complexe. Notre
outil se veut plus intuitif que les outils traditionnels de création. Nos résultats en illustrent
le potentiel.

mots-clés : Outils de création, figure dérivée de l’ombre, Ombrage inverse, Ré-
flectance Lambertienne

v

Abstract

Due to recent technological advances, the creation of 3D objects is becoming more important.
It is critical to offer appropriate and accessible tools to users from diverse backgrounds.
Unfortunately, the tools traditionally used in 3D creation are designed for professionals,
require complex and time-consuming training, and are unsuitable for inexperienced users
who form the vast majority of potential users.

We propose a simplified creation tool that uses sketch-based methods. First, the desired
mesh is created from a traced outline. The interior is inflated following the method of
Dvoroznak et al. [10]. Second, the height (displacement) of the mesh is achieved by altering
the strips created by shading. Shading is the result of a Lambertian reflection model for a
given directional light.

Our method consists of using the strips from the method of characteristics applied to solve
Shape-From-Shading. Using the strips, we identify the regions affected by the change in
shading. One of these regions will be used to interpolate the shading according to the new
isophote. From this new shading, the characteristic strips will be used to find the new height,
ensuring that only the region affected by the change in shading is altered. The meshes created
can then be combined, inspired by the method proposed by Dvoroznak et al. [10] to form a
single, complex mesh. Our tool is designed to be more intuitive than the ones provided by
professional 3D software. Our results illustrate its potential.

keywords: Creation Tool, Shape-From-Shading, Inverse Shading, Lambertian
Reflectance

vii

Contents

Résumé . v

Abstract . vii

List of terms and abbreviations . xi

Acknowledgements . xiii

Chapter 1. Introduction. 1

Chapter 2. Literature Review . 5

2.1. Geometry Processing. 5

2.2. Rendering . 10

2.3. Inverse Rendering . 16

2.3.1. Classic Shape-From-Shading . 16

2.3.2. Shape-From-Shading Related Problems . 23

2.4. 3D Creation . 25

Chapter 3. Background . 31

3.1. Method of characteristics for SFS . 31

3.2. Monster Mash Approach . 35

ix

Chapter 4. Methodology . 41

4.1. System Overview . 42

4.2. Inflation . 45

4.3. Bounded Band and Impacted Region. 47

4.4. Localized Shading Interpolation . 50

4.5. Strip Integration . 51

4.6. Shape Reconstruction . 52

4.7. Assembling Layers . 53

Chapter 5. Results . 57

Chapter 6. Conclusion . 67

References . 71

x

List of terms and abbreviations

2D Two Dimensional

3D Three Dimensional

BRDF Bidirectional Reflectance Distribution Function

PDE Partial Differential Equation

RBF Radial Basis Function

SFS Shape-From-Shading

xi

Acknowledgements

I am deeply grateful for the support and guidance I received throughout this project. I want
to express my appreciation to my partner for her unwavering support, love, and understand-
ing during this journey. I also owe special thanks to my mother for her belief in me. Special
thanks to my advisor Pierre Poulin and co-advisor Mikhail Bessmeltsev for their invaluable
advice and multiple revisions. I am grateful for the valuable feedback from my committee
that helped improve this thesis.

I am thankful for my experience at Ubisoft La Forge, where I had the opportunity to meet
Damien, Jean-Philippe, and Arnaud. The willingness to share their passion was inspiring.
Additionally, I am grateful to Andrea for her involvement and for making me feel an integral
part of the team at La Forge. Likewise, I deeply value the enriching discussions with my
colleagues at LIGUM - Elsa, Cédric, Ivan, Caio, Mathis, Bowen, Mathieu, and William.

Thanks to my family, friends, and all the participants for their understanding and support.

I also wish to express my appreciation to NSERC for their financial support. This includes
the NSERC Discovery grant facilitated by Pierre and the NSERC Nova grant, obtained
through Mikhail and Pierre.

xiii

Chapter 1

Introduction

Michelangelo is probably one of the best known artists for his sculptures such as David
(Figure 1.1) and his frescoes on the ceiling of the Sistine Chapel. These creations were
born from the technological developments and knowledge of their time. Fast-forward to the
era of the computer revolution, the blend of art and technology finds a parallel in the field

Figure 1.1 – Sketching of the statue of David made by Michelangelo. Sketch by azazelok
from https://pixabay.com/photos/michelangelo-david-revival-art-2739280/.

https://pixabay.com/photos/michelangelo-david-revival-art-2739280/

of computer graphics for synthetic images. Image synthesis frequently involves a virtual
scene with geometric shapes, materials and textures, virtual light sources, virtual cameras,
and other elements such as light transport algorithms. Tools for these creations, found for
instance in software like Blender and Maya, are extensively utilized in diverse artistic media,
including films, video games, and documentaries.

In contrast, many individuals possess an ability for drawing, a skill that is inherently more
intuitive yet paradoxically underutilized in computer graphics due to hidden complexities. A
key element in translating two-dimensional (2D) drawings to three-dimensional (3D) shapes
lies in our ability to perceive depth from shades of gray 1 in an image. The interaction
between light and surface properties, such as orientation and materials, create gradients of
gray that the human visual system intuitively understands, influencing depth perception.
This gradient results from a combination of shape curvature, texture, shadows, occlusion,
attenuation, perspective, etc., which makes this problem heavily underconstrained. Despite
its naturalness, deducing 3D elements from 2D information remains a complex task. While
depth perception has been a subject of numerous studies, it remains an area with much to
be understood. It is still unclear if we can consistently and accurately retrieve a shape, even
if our visual system suggests it may. This limitation is exploited in several optical illusions.

In our research, we seek to use the gradient of gray to manipulate geometric features, giving
users the ability to naturally and intuitively modify geometric elements of an object while
reducing the learning curve for creation tools. It expands on Monster Mash from Dvoroznak
et al. [10], a tool to create shapes of more organic blobby-like objects by drawing their
contours. In a simplified setting with purely Lambertian surfaces and control for an incident
light direction, we seek to reuse developments made since the 1970s on Shape-From-Shading
problems [20, 19, 14, 44, 59, 28, 11, 65, 46, 22] and real-time shading in order to
manipulate shapes. The resulting shapes are displayed in real time for direct feedback in an
iterative editing process (Figure 1.2).

This thesis is organized as follows. We begin with a literature review in Chapter 2 starting
from geometry processing, rendering, and inverse rendering, to follow with 3D creation tools.
Then, we elaborate more on the background needed in Chapter 3 to implement our method.
In Chapter 4, we begin with a short overview of our system. Afterwards, we describe the ins
and outs of our method and the underlying concepts. In Chapter 5, we present our results

1. On a computer, colors are represented as additive color channels RGB. Gray appears when the intensity
of each channel has the same value.

2

Figure 1.2 – On the left, the leftmost column shows the shading of the shape before (top)
and after (bottom) it has been edited with our method. The three other columns show the
two meshes under different viewpoints. On the right, we display the final mesh after several
iterations.

with an in-depth discussion of different cases. Finally, we conclude our work with a brief
discussion on future improvements in Chapter 6.

3

Chapter 2

Literature Review

In this chapter, we begin with an overview of the fundamental principles in geometry pro-
cessing. We explain some elements of radiometry and how rendering is done. Then, we
provide an overview of inverse rendering techniques to retrieve three-dimensional (3D) fea-
tures from shading. Finally, we present artistic design tools that use concepts from geometry
processing, rendering, and inverse rendering.

2.1. Geometry Processing
Geometry processing is a specialized area of study encompassing the manipulation and analy-
sis of geometric structures, particularly in the realm of computer graphics and computational
mathematics. In its simpler form, geometry processing is an extension of signal processing
that regroups operations on shapes.

Geometry processing is divided into three stages: acquisition, processing, and consump-
tion. In the past decades, acquisition has been more accessible with the development of
new technologies like LiDAR, ultrasound, 3D scanners, and so on, and the advancement in
modeling tools. The resulting geometric data are processed through reconstruction, filtering,
re-meshing, and parameterization algorithms. Consumption refers to the final stage where
the result is utilized by another program, a computer display, a 3D printer, etc. Geometry
processing algorithms often reuse calculus and differential geometry concepts.

The concept of shape is central in geometry processing. Mathematically, shapes are char-
acterized by geometric and topological properties. Geometric aspects focus on extrinsic
attributes like position, normal, curvature, etc. Topological properties, on the other hand,

Figure 2.1 – Example of a triangle mesh. In this case, we can see a mesh where the points
are vertices, dark segments are the edges of triangles, and colored regions are the triangles
with shading. Image from http://web.mit.edu/manoli/crust/www/slides/piggy.jpg.

delve into the intrinsic characteristics of a shape that remain unchanged despite deforma-
tions, such as bending or stretching. Notable examples are properties like orientability and
connectivity.

Shapes can be represented in two primary ways: through their boundaries or their volumes.
Our work primarily focuses on the former, specifically on surfaces. Surfaces in mathematics
are structures that are embedded, at least, in three-dimensional space R3. These are not
just any random assemblages in space; rather, they are defined by properties like smoothness
and orientability, properties that must hold across every small region of the surface, thus
characterizing the entirety of it.

The representation of surfaces is broadly categorized into three types: implicit, parametric,
and explicit. Implicit representations define shapes through functions where each parameter
cannot be solved directly, such as Signed Distance Functions (SDFs). An SDF assigns a
value to each point in space, indicating its "distance" from a surface. Parametric surfaces
are surfaces where each parameter depends on other common parameters. They can be
Bézier surfaces, bicubic polynomial patches, spline-based surfaces, etc. Explicit surfaces

6

http://web.mit.edu/manoli/crust/www/slides/piggy.jpg

Figure 2.2 – Examples of different types of manifold and non-manifold structures for tri-
angle meshes. A manifold ensures that one can draw a continuous, closed contour around a
vertex, passing through all connecting edges without any discontinuity so that it forms a half-
disk-like shape. Image adapted from https://cs184.eecs.berkeley.edu/sp19/lecture/

8-17/meshes-and-geometry-processing.

are functions where one of the parameters can be solved directly based on the others. In
computer graphics, explicit surfaces are, most of the time, represented through a finite set
of elements. They can be point clouds, graphs, triangle meshes, etc. Explicit surfaces are
more widespread than other representations.

Our work primarily focuses on triangle meshes, a specific type of graph (Figure 2.1). These
meshes consist of a collection of vertices and triangles (V, F), arranged under particular
connectivity rules such that the region around each vertex forms a manifold. A manifold
(Figure 2.2) ensures that one can draw a continuous, closed contour around a vertex, passing
through all connecting edges without any discontinuity so that it forms a half-disk-like shape.

As with signal processing, geometry processing often requires the use of partial differential
equations (PDEs) for different applications. A PDE can be described as an operator O
acting over a function f such as ∇f , f∆f , and so on.

A typical PDE over a smooth surface Ω can have the following form

O(f(x)) = g(x) x ∈ Ω. (2.1.1)

7

https://cs184.eecs.berkeley.edu/sp19/lecture/8-17/meshes-and-geometry-processing
https://cs184.eecs.berkeley.edu/sp19/lecture/8-17/meshes-and-geometry-processing

Common boundary conditions, for x ∈ ∂Ω, are Dirichlet f(x) = h(x), Neumann df
dx

(x) · n =
h(x), or Robin af(x) + b df

dx
(x) = h(x). Boundary conditions are necessary to have a well-

posed PDE. As stated by Hadamard [17], a PDE is well-posed if a solution exists, is unique,
and the solution depends continuously on the initial or boundary conditions.

However, PDEs cannot be used directly on a triangle mesh because the domain of a mesh is
non-trivial, discrete, and embedded in R3. Equation 2.1.1 is often referred to as the strong
form because f needs to be well-defined at every point and differentiable up to the degree
of the PDE. It means that we cannot use it directly on a discrete set of triangles. Instead,
using the fundamental lemma of variational calculus, we can rewrite it in its weak form∫

Ω
(O(f(x)) − g(x))v(x)dx = 0 ∀v(x) ∈ S (2.1.2)

where S is a set of test functions where v(x) is assumed to be smooth. 1 The weak solution
lets us solve the PDE over a region even if it is not well-defined.

In geometry processing, most operators are typically linear operators Olin, which means that
they need to respect Olin(u+ v) = Olin(u) + Olin(v) and Olin(c · u) = c · Olin(u). There exist
plenty of operators for intrinsic or extrinsic linear operators [62]. We seek to discretize the
Laplacian PDEs so that we can express them on a mesh∆f(x) = 0 x ∈ Ω

f(x) = h(x) x ∈ ∂Ω
(2.1.3)

where Ω is the domain of integration, and ∂Ω is the boundary. The second equation of the
system corresponds to the boundary condition.

We can rewrite the system in its weak form
∫

Ω(∆f(x) − g(x))vj(x)dx = 0

f(x) = h(x)
(2.1.4)

where vj ∈ S.

By using the Green identity, Equation 2.1.4 becomes−
∫

Ω ∇vj(x) · ∇f(x)dx+
∫

∂Ω vj(x)(n · ∇f(x))dx−
∫

Ω vj(x)g(x)dx = 0

f(x) = h(x).
(2.1.5)

1. The smoothness criteria can often be relaxed for lower-order differentiable functions.

8

If the mesh does respect the manifold property and is completely closed, we can discard the
second term because the domain has no boundary. It is important to note that n for an
embedded surface refers to the normal along the boundary in the surface (i.e., tangent to
the surface) and not the normal at the surface (i.e., perpendicular to the surface). If it does
not, it is common to assume that the test function vanishes closer to the boundary 2.

−
∫

Ω ∇vj(x) · ∇f(x)dx−
∫

Ω vj(x)g(x)dx = 0

f(x) = h(x).
(2.1.6)

We can express f(x) =
∑

i fivi(x), g(x) =
∑

i givi(x), and h(x) =
∑

i hivi(x) using a basis
v(x). This approach is called the Galerkin finite element method where we assume that the
basis of f(x), g(x), and h(x) are the same functions part of the test set.

∑

i∈|S|
∫

Ω −fi∇vi(x) · ∇vj(x)dx−
∫

Ω givi(x)vj(x)dx = 0

fk = hk ∀k ∈ |∂Ω|.
(2.1.7)

If such a test set exists, we can rewrite Equation 2.1.7 into a linear system 3. The conventional
test function is to use the hat function, which is one at a vertex position and zero otherwise,
where values in-between vertices are piecewise linearly interpolated (Figure 2.3).

Then, we have Lf = Mg

fk = hk ∀k ∈ |∂Ω|
(2.1.8)

where each row of f and g represents the coefficients for each test set vi.

Without going into detail, Pinall et al. [47] show how to compute L using trigonometry
and refer to it as the cotangent Laplacian. M is referred to as the mass matrix and can be
computed using the barycentric or Voronoi area around each vertex [36]. The book of Bosh
et al. [5] provides additional information.

2. Boundary is often used to represent two similar concepts and can be quite confusing. The boundary
can be referred to as the actual border of a domain like the border of a mesh or the condition that we impose
on a domain of integration which could be inside a mesh. The two are often mismatched because they are
often the same.

3. Even though we specify that the test function at the boundary vanishes, we can make a stronger claim
that every value at the boundary should be equal, even if the test function at the boundary vanishes.

9

Figure 2.3 – Hat function defined over a triangle mesh. Image from https:

//www.researchgate.net/figure/Illustration-of-a-hat-function-51-defined-

over-a-2D-simplicial-complex-embedded-in_fig9_352176002.

Other methods like boundary element methods and discrete exterior calculus can make it
easier to discretize our PDE, but those methods are out of the scope of this literature
review. Unfortunately, no perfect solutions exist and they all have some kind of trade-off.
The Galerkin approach is more common in practice.

2.2. Rendering
Rendering in computer graphics is the process of generating images that visually represent
a scene, composed of elements like geometries, light sources, and materials, from a specific
viewpoint, or camera. It involves simulating how light interacts with surfaces, as a combi-
nation of geometry and material properties.

In current applications, the majority of images are rendered in 2D and displayed on flat com-
puter screens. These images are essentially a grid composed of numerous picture elements,
commonly known as pixels, which are arranged in rows and columns. Each pixel contains
a number of channels that carry color information. The most widely used format for this
purpose is the RGB color model. RGB, an acronym for Red, Green, and Blue, is an additive
color model where various colors are produced by blending different intensities for each color
channel.

10

https://www.researchgate.net/figure/Illustration-of-a-hat-function-51-defined-over-a-2D-simplicial-complex-embedded-in_fig9_352176002
https://www.researchgate.net/figure/Illustration-of-a-hat-function-51-defined-over-a-2D-simplicial-complex-embedded-in_fig9_352176002
https://www.researchgate.net/figure/Illustration-of-a-hat-function-51-defined-over-a-2D-simplicial-complex-embedded-in_fig9_352176002

Figure 2.4 – Two common integration processes to display a scene into a 2D image: ras-
terization (left) and ray tracing (right). Figures from https://www.scratchapixel.com/.

Rendering stands as one of the earliest and continually evolving topics within the domain
of computer graphics. It primarily aims to replicate the visual impression of a scene, en-
capsulating aspects like lighting, shading, materials, and other visual characteristics to craft
either realistic or stylized representations. The rendering process typically follows a struc-
tured approach known as the graphics pipeline, which converts scene information into a
format optimized for hardware acceleration, notably on Graphics Processing Units (GPUs).
GPUs are specially architected to execute highly parallel programs, commonly referred to as
shaders for graphics-related tasks and beyond. Then, the data is integrated to form a final
image. The integration can come from various rendering methods, but rasterization and ray
tracing have emerged as the most prevalent methods. They have become feasible thanks to
significant technological and algorithmic advancements over recent decades.

Rasterization, as depicted in Figure 2.4 (left), is a process that transforms vector-based
information into a discretized image. This technique begins by taking geometric primitives
from the scene consisting of polygons, lines, or points. These primitives are transformed
into the frustum of the camera—a truncated pyramidal shape defining the directly visible
region of 3D space from the camera’s perspective. In the frustum, two axes correspond to
the screen coordinates, while the third axis represents "depth" relative to the camera.

11

https://www.scratchapixel.com/

Figure 2.5 – Series of transformations referred to as Model View Projection Transformation.
Image taken from Kai Lawonn Lecture in Computer Graphics at https://vis.uni-jena.

de/?page_id=540.

The depth is crucial as it determines the correct order in which primitives are viewed. Con-
tent outside the frustum is not considered for rendering. The rasterization process continues
with a scan-conversion algorithm to determine which pixels of the image fall inside or on the
boundary of a primitive and should thus be filled. During this phase, attributes assigned
to the vertices of primitives, such as color normal, or texture coordinates, are interpolated
across the covered pixels. This interpolation is key to producing efficiently more complex
visual effects, simulating light interactions within the rendered image.

In the context of rasterization, to minimize data manipulation on the GPU and under the
assumption that geometric shapes remain relatively unchanged most of the time, affine trans-
formations are utilized to convert points between coordinate spaces. The process typically
comprises several stages. Initially, vertices are transformed from a local space to a global
space. These transformed vertices are then adjusted to the camera’s viewpoint. Finally, the
vertices are projected onto a 2D screen using either an orthographic or perspective projec-
tion. This series of transformations is often referred to as the MVP (Model-View-Projection)
model (Figure 2.5).

Ray tracing, illustrated in Figure 2.4 (right), employs a distinct approach compared to
rasterization. This technique involves tracing the path of individual rays that originate
from the camera aperture and pass through each pixel on the image plane. These rays
interact with the geometry of the scene. The color of each pixel is determined based on
these interactions, considering the intersections of rays with scene objects, and accounting for
light and material properties of the objects. While basic ray tracing provides a fundamental
framework, more advanced implementations exist to accurately render complex surfaces.

12

https://vis.uni-jena.de/?page_id=540
https://vis.uni-jena.de/?page_id=540

Figure 2.6 – Direct (left) and indirect (right) illuminations from a light source. Direct
illumination is caused by light bouncing once off the surface and reaching the eye directly.
Indirect illumination is when light bounces on multiple surfaces before going to the eye.
Figures from https://www.scratchapixel.com/.

These include surfaces that are reflective, refractive, or composed of microfacets. However,
such advanced techniques are beyond the scope of our work.

Illumination is elementary to create stunning visual effects (Figure 2.6). Illumination, in
the context of 3D scenes, pertains to the realistic rendering of lighting effects, accounting
for how light rays interact with various surfaces. This aspect is fundamental in creating
computer-generated images that are both lifelike and visually compelling. Often referred to
as global illumination, it encompasses two primary components. Direct illumination involves
light emanating from a light source and directly reaching and reflecting off surfaces, before
reaching the camera. It contributes to the most immediately noticeable lighting effect.
Indirect illumination is more complex, as it involves light rays that bounce off multiple
surfaces before ultimately being captured by the camera. Surface regions that do not interact
directly with light create regions that we refer to as shadows. Those shadows are cast by
the other geometric elements in the scene and are referred to in the computer graphics
community as shadow casting. These elements together create a more dynamic and realistic
portrayal of lighting in 3D environments.

To model complex illumination, the theory of radiometry has proven to be instrumental. It
enables the realistic rendering of light and its interactions within digital environments.

13

https://www.scratchapixel.com/

Figure 2.7 – Two concepts from radiometry: irradiance (left) and radiance (right). Irra-
diance is the total amount of light that is flowing from or into a point. Radiance is the
amount of light received at a point from one direction. Figures provided by Adrien Gruson
and adapted.

Radiometry focuses on measuring light propagation. Within this field, two central concepts
are often discussed in rendering: irradiance and radiance. Irradiance quantifies the amount
of light 4 received by a point on a surface from all directions above it. In contrast, radiance
measures the amount of light passing from a point on a surface in a particular direction.
These concepts are essential for understanding how light interacts with surfaces (Figure 2.7).

Based on radiometry and optical geometry, Kajiya introduced the rendering equation [24]
in 1986 as

Lo(x, ωo) = Le(x, ωo) + Lr(x, ωo)

Lr(x, ωo) =
∫

H2
fr(x, ωi, ωo)Li(x, ωi)(ωi · n̂)dωi (2.2.1)

with the following terms:
Lo is the total radiance
Le is the emitted radiance
Lr is the reflected radiance
Li is the incident radiance
x is a point in space
n̂ is the normal at the location in space
ωo is the direction of the outgoing light

4. Quantity of light is often referred to as flux in the literature.

14

ωi is the direction of the incident light
H2 is a subspace that represents all possible directions in a hemisphere
fr is the Bidirectionnal Reflectectance Distribution Function (BRDF).

Multiple work have reused Equations 2.2.1. The rendering equation, in itself, is very powerful
because it can model a very large variety of phenomena.

At the core of Physics-based rendering (PBR) lies the Bidirectionnal Reflectectance Distribu-
tion Function (BRDF) fr, a critical component that defines how light scatters off a surface
in different directions, enabling the simulation of complex phenomena such as reflections,
refractions, and subsurface scatterings. PBR emphasizes the realistic simulation of multiple
light interactions with surfaces and materials. This approach is favored for its ability to
produce highly realistic and physically accurate visual results.

A simple BRDF commonly used is the Lambertian model, which assumes that light is uni-
formly redistributed in intensity in the hemisphere above a point

fr(ωi, ωo) = ρ

π
(2.2.2)

where ρ is referred to as the albedo.

If we suppose that we have a light source in one direction where Li(x, ωi) = δ(ωi−l) and light
direction l ∈ H2, by using the rendering equation 2.2.1, we obtain a well-known formulation

Lo(x, ωo) =
∫

H2
fr(x, ωi, ωo)Li(x, ωi)(ωi · n̂)dωi (2.2.3)

=
∫

H2

ρ

π
δ(ωi − l)(ωi · n̂)dωi (2.2.4)

= ρ

π
(n̂ · l). (2.2.5)

If we suppose that ρ = π and that the integration is done over the whole sphere S2 of
directions, we can rewrite the equation. The part of the domain of integration that is not
part of H2 should not affect the result because no light can traverse below the surface 5.
This part of the domain is responsible for darker regions observed in a shaded image. The
contribution of Equation 2.2.5 in this region is none.

R(n̂) = max(l · n̂,0), (2.2.6)

5. We assume that the surface is opaque and no light cannot traverse it in any way.

15

Equation 2.2.6 is known as the Lambertian reflectance. More complex BRDFs exist such
as from Phong-Blinn [4], Ward [63], Oren-Nayar [42] and Matusik’s MERL measurement
database [35]. When the BRDF varies over a surface, it is qualified as an svBRDF, and as
tsvBRDF when it also varies over time. However, modeling more complex light behaviors
through BRDFs is not within the scope of this thesis. The variation of reflectance observed
at each point corresponds to what we commonly refer to as shading. The normal where the
reflectance is zero is commonly referred to as self-shadowing and is responsible for the dark
region observed in a shaded image.

2.3. Inverse Rendering
Inverse rendering is an area of study that concentrates on retrieving all kinds of physical
properties in a scene from single or multiple images. The problem of inverse rendering is
one of the fundamental problems of computer vision. Computer vision focuses on acquiring,
and analyzing images to mimic the intricacy of human perception of color and shape. It
enables machines to interpret visual data from the real world, extracting high-dimensional
data from images captured in various environments. This process goes beyond mere recog-
nition and categorization of visual elements; it involves understanding spatial and temporal
relationships, identifying patterns, and interpreting different environmental contexts. Shape-
From-Shading (SFS) was one of the first problems introduced to retrieve the displacement
of a shape from its shading in computer vision.

2.3.1. Classic Shape-From-Shading

From the 1970s to the 2000s, Shape-from-Shading has been an area of intense research focus.
These methods were designed to deduce 3D shape information from a single image. By
analyzing the shading within the image, SFS methods estimate the depth of surfaces at
each point. This process is based on the assumption that lighting conditions and reflectance
properties of surfaces are uniform and either known or could be estimated.

Depth perception is heavily influenced by shading. Barrow et al. [2] highlight that shading is
the result of a combination of illumination, reflectance, and surface orientation information.
They note that this combination is not unique, indicating the complexity of deciphering shad-
ing and depth. Ramachandran [51] discovered several common assumptions about shading.
He found that people typically presume incident light to originate from above, illumination to
be uniform and consistent, and perceived shape to be influenced by boundaries (Figure 2.8).

16

Figure 2.8 – Optical illusions made by our perception from shading, as studied by Ra-
machandran [51]. Image taken from https://fpcv.cs.columbia.edu/.

However, he also observed that these global assumptions about lighting and shading can be
altered by an individual’s prior knowledge or experience. This suggests that our understand-
ing and interpretation of shading, and hence depth, are not only influenced by the immediate
visual cues but also by our cognitive process and prior experiences.

17

https://fpcv.cs.columbia.edu/

Typically, in SFS, lighting conditions are assumed to be known as well as material properties
such as the BRDF for a surface. The process is to extract information from the irradiance
and to retrieve the original shape. In its simplistic form, the light reflected is assumed to
follow a Lambertian distribution. Instead of Equation 2.2.6, reflectance R is reformulated
for an implicit surface z(x,y) with the coordinates p = dz

dx
and q = dz

dy
. The normal of such

an implicit surface is colinear with

n =
[
− dz

dx
−dz

dy
1
]T

=
[
−p −q 1

]T

. (2.3.1)

The inverse transformation is

p = −nx

nz

q = −ny

nz

.
(2.3.2)

Reflectance R can be written as

R(p,q) = −lxp− lyq + lz√
(1 + p2 + q2)

(2.3.3)

where lx, ly, and lz define the normalized direction of light. Each level-set of the Lambertian
reflectance (Equation 2.3.3) is an isophote. An isophote corresponds to a curve of equal
brightness in the observed image. A complex surface can thus have disconnected isophotes.
A null brightness occurs in regions in full shadow, and an associated isophote is ill-defined.
However, right on the border of such a region, we will consider the isophote of null brightness
for our manipulation.

Even if other more advanced BRDFs could be used for SDF, the problem seems to be already
difficult enough to solve because of the inherent ambiguity related to shading.

The SFS problem, in the computer vision literature, is then generally acknowledged to be

E(x,y) = R(p,q) (2.3.4)

where E(x,y) represents the shading intensity observed at a given point in the image plane
xy.

18

Figure 2.9 – Shading ambiguity even for a simple surface is one of the biggest challenges
to overcome in SFS. Indeed, as we can see in multiple columns, for a given light direction
(white arrow), multiple surfaces can generate the same shading. Image taken from [61].

The p,q formulation is commonly used for computing the reflectance, but it is inadequate to
represent the surface normal orientation that lies in the xy plane. We will discuss strategies
to prevent these problems later.

The primary challenge in SFS lies in resolving the ambiguity of shading (Figure 2.9). This
ambiguity arises when different shapes produce an identical shading in an image, making it
difficult to ascertain the true 3D structure. Despite ambiguity, most people have expecta-
tions about the form that the shape should take. This capability suggests that our visual
system employs additional assumptions and cues. Understanding and incorporating the prin-
ciples behind this human ability to perceive depth from shading is a key area of research in
enhancing the accuracy and effectiveness of SFS techniques.

The uniqueness of SFS has been the subject of numerous studies. To our knowledge, no one
has been able to prove that SFS is well-posed in the general case. Oliensis [39, 40, 41] has
shown that a unique solution exists when a surface reflectance is Lambertian and that it is
illuminated by a distant light source aligned with the camera. Later, Rouy et al. [53] and
Lions et al. [33] have proven that a solution exists in the viscosity sense for the case where the
light is not purely aligned with the camera, when boundary conditions are specified. Prados
et al. [50, 49, 48] extended the claim for a perspective light (i.e., a point light source) when
they relax the conditions on the boundary. To our knowledge, even if the solution has been

19

proven to be unique when boundary conditions are specified, no numerical method has been
able to solve SFS robustly.

Algorithms for SFS can generally be classified into four main categories: propagation, min-
imization, local, and linear. The propagation approach involves propagating information
across the domain, starting from initial conditions and gradually extending the solution to
the entire area. Minimization methods, on the other hand, are centered around identifying a
minimum of energy functions. Local methods operate under the assumption that shapes can
be approximated as belonging to a specific subclass within a local region. They simplify the
problem by dealing with smaller, more manageable sections of the shape at a time. Linear
methods simplify or approximate the equations of SFS by linearizing specific terms. This
simplification often makes the problem more tractable, allowing for easier computation. We
will now detail each category.

Propagation Methods. One of the first attempts to solve SFS was done by Horn [20]
through a propagation method. His approach to the problem is to rewrite Equation 2.3.4
and uses the method of characteristics. More on the method of characteristics to solve SFS
is provided in Chapter 3.

Alternative propagation methods have been proposed with an emphasis on a specific form of
the Hamiltonian-Jacobi equation. Kimmel et al. [27, 28] propose a novel approach to solve
the SFS problem. By stating that the light is in the same direction as the viewpoint, they
reframe the problem as

E(x,y) = 1√
1 + dz

dx

2 + dz
dy

2
(2.3.5)

√
1 + dz

dx

2
+ dz

dy

2
= 1
E(x,y) (2.3.6)∣∣∣∣dzdx2

+ dz

dy

2∣∣∣∣ =
√
E(x,y)−2 − 1. (2.3.7)

The Fast Marching method from Sethian et al. [56] and the Level-Set method from Kimmel
et al. [27, 28] were introduced to solve numerically Equation 2.3.7. Unfortunately, because
of the ambiguity of bas-relief shapes, their solution can result in regions where the concav-
ity/convexity is incorrectly assigned. Prados et al. [49] generalized the Hamiltonian-Jacobi

20

equation (2.3.7) to regroup orthographic/perspective light configurations into one formula-
tion and provided a numerical solver as well.

Minimization Methods. Instead of using a propagation method, Ikeuchi and Horn [22]
convert the problem to a functional problem where they retrieve p and q using the following
minimization:

min
p,q

∫
Ω
L(x,y,p,q) dA = min

p,q

∫
Ω
(E(x,y) −R(p,q))2 +

∑
i

λiCi(x,y,p,q) dA (2.3.8)

where λi is the weight associated to constraint Ci(x,y,p,q). The core component of the min-
imization is to use variational calculus techniques to find a global solution. However, the
nonlinear nature of reflectance makes it difficult to find it. Without any additional con-
straints, discretizing the problem directly will result in a heavily underconstrained problem
and a lack of cohesion between discretized elements, making the surface discontinuous.

To resolve potential discontinuities, Ikeuchi and Horn introduce additional constraints on
the solution such as smoothness and occluding boundary conditions

Csmoothness(x,y,f,g) =
∫

d

dx
f + d

dy
f + d

dx
g + d

dy
g dA (2.3.9)

Cboundary(x,y,f,g) =
∫

(f(x,y) − fknown)2 + (g(x,y) − gknown)2dA (2.3.10)

where fknown and gknown are the values known at the boundary. The f,g coordinates can
represent normals that lie in the plane. They are derived from the stereographic projection

f → 2p
1 +

√
1 + p2 + q2

g → 2q
1 +

√
1 + p2 + q2

p → 4f
4 − (f 2 + g2)

q → 4g
4 − (f 2 + g2) .

(2.3.11)

To minimize Equation 2.3.8, Ikeuchi and Horn use the Euler-Lagrange equation, which cor-
responds to an alternative system where the global minimum is the same as Equation 2.3.8.

21

An iterative method is used to solve the equation numerically using a finite-difference for-
mulation.

Later, Brook and Horn [19] introduce the integrability constraint:

Cintegrability(x,y,p,q) =
∫

dp

dx
− dp

dy
dA (2.3.12)

to make sure that the surface is integrable and respects the fact that dz2

dxdy
= dz2

dydx
. They

also propose to include the occluding boundary by using directly the normal n as a penalty
term that circumvents the p,q parameterization. The occluding boundary corresponds to the
normal of the shape at the silhouette so those normals are perfectly parallel to the image
plane. They use a similar approach to Ikeuchi and Horn to solve their nonlinear system.

Both formulations are interesting, but they offer no guarantee for a global minimum. They
seem to produce good results on surfaces with simple curvature.

Instead of directly using the Euler-Lagrange equation, various iterative solvers have been de-
veloped for more efficient minimization of the objective functions. Methods such as Gradient
Descent and Conjugate Gradient, among others, stand out in this regard. These methods, as
discussed in the work of Barron et al. [1], Santo et al. [54], and Horn [19], exhibit distinct
convergence properties and have proven to be relatively effective in SFS. However, a notable
limitation of these methods is their requirement for extensive manual tuning. Adjusting the
coefficients for each constraint can be a meticulous and nontrivial task. Moreover, these ad-
justments are not consistent across different scenarios, especially when dealing with varying
observed intensities in images.

Acker [11] introduces the use of a homotopy solver to identify a set of potential solutions for
a given observed intensity. His approach yields results qualitatively similar to those obtained
by Kimmel et al.’s Fast Marching method [28], particularly when the light source aligns with
the optical center. When the light is not at the optical center, the method produces wave-like
results.

Local Methods. Local approaches to SFS focus on analyzing small patches or points in
the image independently to infer local normal orientations. These techniques often use local
image gradients and shading information to estimate the normal at each image point. The
challenge with local methods is integrating these local estimates into a globally consistent
surface, as they can lead to inconsistencies otherwise.

22

Initially, in 1984, Pentland [43] proposed a local approach using local shading analysis by
assuming that the shape is locally spherical. However, this assumption holds only for a subset
of shapes. Instead, Xiong et al. [65] introduce a piecewise method where they solve for each
patch locally. By assuming that the solution is locally quadratic and that the light direction
is never at the optical center, they can prove that the solution is unique for every patch.
Then, they compute the local likelihood distribution associated with each configuration and
reuse this information to reconstruct the surface globally. The results of Xiong et al. [65] are
quite impressive, but they tend to produce more flattened shapes depending on the number
of patches that have been used. They also result in concave regions instead of convex regions
in specific cases.

Linear Methods. Linear methods simplify the SFS problem by linearizing Equation 2.3.4,
which relates the image intensity to the surface orientation and lighting. Pentland [44]
proposes a similar approach by linearizing the reflectance and using the Fourier transform
to retrieve the final shape. Tsai and Shah [46] propose a method that approximates p,q by
finite difference and linearizes the Lambertian reflectance to retrieve z(x,y). Both methods
perform poorly when the surface features large elevations or/and when the light is not aligned
with the viewpoint.

A critical observation across the various methods discussed from classical Shape-From-
Shading seems that they perform significantly worse if the light is not aligned with the
viewpoint. This limitation is consistent, suggesting that the equation for SFS under equal
reflectance conditions (Equation 2.3.4) is significantly less effective in such lighting scenar-
ios. In this configuration, the results tend to be greatly influenced by the direction of the
light. Moreover, in our work, it is less intuitive for an artist to draw some shading when the
light and the viewpoint are aligned in the same direction since it rarely occurs in real-life
scenarios.

2.3.2. Shape-From-Shading Related Problems

Since the advent of the original SFS methods, numerous extensions have been proposed.

Shape From X. The field began exploring variants commonly referred to as Shape From
X, where X represents various factors like stereo, motion, texture, focus, and others. In this
context, the use of multiple stereo images emerges as a powerful tool for depth retrieval. The
redundancy provided by multiple images proves crucial in accurately determining the final

23

shape. In our context, drawing accurate shading in multiple images proves quite a challenge.
This is also the case for drawing factors other than shading.

In a similar vein, Barron [1] makes a breakthrough by employing statistical inference and
incorporating different priors on aspects such as reflectance, shape, smoothness, and color
channels. His methodology, utilizing more information than traditional SFS, demonstrates
notable results, showcasing the potential of integrating more information from an image into
the classical SFS.

introduce NeRF (Neural Radiance Fields) to synthesize novel views. They model a radiance
field that represents density and color from different viewpoints. To retrieve the radiance
field, they train a neural network on a coherent collection of images from various viewpoints.
Their method can also be used to extract shape information.

Despite their results, NeRF-based methods come with notable limitations. The core issue lies
in the volumetric representation they rely on, which, while powerful, can sometimes restrict
broader applicability, particularly in dynamic or complex environments. Furthermore, these
methods require significant computational resources. It is particularly relevant in fields like
real-time gaming, virtual reality, or augmented reality, where speed is as crucial as accuracy.
It is also problematic due to the sheer volume of input data needed. Requirements of large
data are crucial to effectively resolve ambiguities in the scene and reproduce it accurately.
A recent development by Kerpb et al. [25] using a rendering technique called Gaussian
Splatting shows significant improvements in training speed, but it is still not feasible for real
time.

Differential Rendering. In the computer graphics community, based on recent break-
throughs in machine learning [30], a renewed emphasis has made differentiable tools more
accessible. This shift has notably influenced optimization methods, with minimization emerg-
ing as a de-facto tool for various tasks. Of particular interest are recent developments in
differential rendering [68, 38].

The task is to minimize the rendered output over an objective function

min
x

∑
i

J(I(xi))

24

where I is the rendered image, x are the scene parameters encoded as a vector, and J is
the objective function. The difficulty of using such a tool comes with computing the Jaco-
bian matrix of I(x), where computations can be intractable. The main focus of differential
rendering research is to make such computations feasible with limited resources.

Even though this method has shown potential, in its current state, it suffers from many
drawbacks such as heavy computations and a reliance on multiple images as targets to
converge to a proper solution. In our work, the costly computations made it impractical
for a real-time application and have been avoided. However, it was deemed important to
acknowledge based on recent developments.

2.4. 3D Creation
In computer graphics, 3D creation is the process that regroups the elaboration of virtual
elements in a scene. It is used extensively across multiple disciplines. In manufacturing, 3D
creation is crucial for realistically mimicking objects. It enhances accuracy, reduces costs,
improves safety, and allows for various optimizations and simulations to identify potential
design flaws early. In the medical field, it is used for detailed replication of organs, aiding in
measurement, study, and treatment planning. Architects leverage 3D creation to visualize
and refine their spatial designs before physical construction, offering a preview of their final
product with simulated global illumination. In the entertainment industry, the focus shifts
to creating either artistically appealing, hyper-realistic, or imaginative scenes. These settings
can blend virtual elements seamlessly into live-action sequences, and bring to life scenes that
might be impractical or impossible to physically construct, including historical or fictional
environments.

In the entertainment industry, the process can be roughly divided into three key areas: 3D
modeling, animation, and composition. 3D modeling is about crafting shapes that are either
accurate representations or visually striking, using advanced 3D software. Animation cre-
ates the illusion of movement through the display of sequential images. It often incorporates
tools to simplify complex phenomena like fluid dynamics, soft-body physics, cloth and hair
simulations, and facial expressions. Composition in computer graphics, much like in cinema,
involves arranging elements within a scene from a specific viewpoint. This includes manip-
ulating camera parameters and lighting effects to achieve a desired style or mood. The final
appearance of a scene is a harmonious blend of these elements.

25

Figure 2.10 – Example of a typical professional 3D modelling tool (Blender). 3D modeling is
a powerful tool for editing shapes, but the steep learning curve makes it harder for beginners
and even intermediate users because of the numerous manual interactions.

Our focus will be on the creation of static 3D shapes, particularly based on triangle mesh
structures. 3D modeling, in essence, involves designing an object to meet a specific outcome
by modifying its shape and attributes.

3D modeling is a process where users work with all kinds of inputs and algorithms to create
interesting shapes. The design of a mesh is a task requiring skilled artists. In professional
3D software like Maya, 3DS Max, and Blender, the initial step usually involves creating or
acquiring the basic structural components of a mesh. This step includes generating vertices
and triangles, subdividing triangles, and displacing vertices.

Often, a simpler primitive shape serves as a basis for further development. Artists refine the
structure, reshaping sections or regions in a manner akin to clay modeling. This involves
techniques to enlarge, reduce, or alter surface areas. Achieving high-quality results requires
a blend of intuition and iterative design to use most efficiently the tools available.

Subsequent steps may involve rigging, a process to prepare the shape for animation within
3D modeling software. Rigging creates an underlying skeleton that is simpler to animate
and enables believable deformations for the original geometry. Rigging thus simplifies the
animation process. Artists may also need to adjust the mapping of 2D or 3D textures over a
surface to add finer details and minimize visual distortion due to the pixelization of textures.

26

The inclusion of physics-based modifications, like cloth deformations, hair dynamics, and
soft-body physics, adds a layer of realism but also complexity. These aspects are challenging
to fine-tune and demand significant time and expertise.

Throughout these stages, artists must continually change their viewpoint, examining the
geometric model from different angles to ensure accuracy and aesthetic appeal. Each task in
a 3D modeling process is intricate and demands a high level of skills and attention to detail.

Another paradigm to reduce this burden is procedural content generation. Procedural con-
tent is a procedure or an algorithm where a set of pre-established rules are used to generate
complex models. The Lindenmayer system [32] is a procedural method, often called L-
System, that uses symbols as input and substitution rules to generate locally new shapes.
It is quite popular for creating various types of trees as demonstrated by Boudon et al. [6].
Perlin noise [45] is a type of procedurally generated noise popular for self-similar properties.
A common usage is to imitate atmospheric or geologic phenomena such as cloud formations
in the sky, caves, island formations, etc. In the last few years, Generative AI has become
much more prevalent because of its ability to build an implicit set of rules learned from data
to generate content from images or texts. In all these examples, procedural modeling frees
the artists from tedious modeling, but it offers very little control to modify the results, apart
from a complete regeneration.

In our work, we will concentrate on a unique approach to 3D modeling that draws inspiration
from sketching, and more specifically on geometric approaches. Sketching represents a more
intuitive natural process, making it an appealing paradigm for simplifying the workflow
for users with less experience. This approach leverages the simplicity and immediacy of
sketching, translating these qualities into the 3D modeling process.

Igarashi et al. [21] introduced a framework called Teddy to create a 3D shape using stroke-
based input. The user draws a contour where an internal shape is inflated. The system
enables cutting, bending, and merging shapes to create casual complex objects with great
simplicity. Li et al. [31] introduced Bendsketch, a framework where the user uses annotated
strokes to build a directional vector field inside a contour. Instead of directly altering the
shape, their system constructs a principal direction field by aligning the directional vector
field with the bending strokes. In an iterative scheme, they spread the principal curvature
over the directional field. Then, they minimize the energy to lift the shape in 3D. They also
introduce different types of stroke discontinuities, sharp features, ridges, valleys, and flat

27

Figure 2.11 – Sketch-based modeling where the user draws a region on a screen. A 3D
geometric model is generated from it. Image taken from [21].

strokes to improve their results. Dvoroznak et al. [9] use a framework where they rely on
regions that are glued together as one mesh. The mesh is inflated. Each region is shifted
so that the mesh does not self-intersect while ensuring various boundary conditions to make
it seamless. In a follow-up, Dvoroznak et al. [10] propose Monster Mash using an adapted
ARAP algorithm [57] instead of shifting each region apart. Our work will extend Monster
Mash; we go more in-depth in Chapter 3.

More precisely in sketch-based modeling, shading-based methods for editing 3D models have
received limited attention from the research community despite shading being a natural
concept to artists. Shading-based methods leverage the shading information from a shape to
edit or reconstruct a 3D model. Gingold et al. [16] introduce shading-based surface editing
using a specific set of strokes to modify regions and accentuate shading effects by bending
regions and moving highlights. However, their tool only allows a user to slightly alter a small
region of the shape. Xu et al. [66, 67] introduce an interactive method where a user draws
an isophote that reaches at least one contour of a shape. Based on the surface normal at
the contour, they interpolate the normals along the isophote while remaining on the cone
formed by the Lambertian reflectance. However, their method presents some limitations. It
requires the user to draw multiple isophotes and to manually edit the interpolated normals
in order to produce visually accurate results, which is quite hard to do, even for an artist.

28

In our work, we will focus on a method based on the method of characteristic strips from
SFS to retrieve a final shape by manipulating directly the shading.

Besides creating or editing the global look of a shape, some research has been applied to
decorate a surface with high-frequency details. Fanni et al. [13] use an algorithm to embellish
a shape by generating a 3D volumetric pattern around a surface. A procedure stacks the
volumetric patterns together and produces a visually appealing result similar to pottery.
Instead of relying on texture mapping to produce higher frequency details on a mesh, Nazzaro
et al. [37] generate a pattern directly in the intrinsic space of the shape. To enable interactive
modification on the surface shape, they propose a new algorithm to find the geodesic path
on a surface so a user can edit directly on the shape. Their approach produces interesting
patterns by avoiding distortion commonly happening from 2D texture mapping, but requires
a large number of vertices and triangles. Mancinelli et al. [34] introduce an interactive Bézier
spline tool on the surface of meshes with a large number of vertices and triangles. It is based
on an alternative approach to Casteljau and Bernstein evaluations. Riso et al. [52] create a
procedure where a user draws 2D polylines directly on the intrinsic surface of a mesh and
uses boolean operations in the intrinsic surface.

In this literature review, we covered multiple facets of sketch-based modeling without men-
tioning learning-based approaches. Learning-based approaches have become more popular
in the last decades due to their powerful versatility. However, learning-based approaches
have often the same limitations. Indeed, they are great for end-to-end pipelines, but altering
partial regions can lead to non-intuitive effects on the rest of the shapes. They are often
poorer to control than traditional tools. For those reasons, we limited our literature review
to non-learning-based approaches.

29

Chapter 3

Background

In this chapter, we provide additional information about the approaches we used for our
method. We elaborate on the method of characteristics in the context of SFS (Section 3.1),
and the method from Monster Mash by Dvoroznak et al. [10] for casual 3D modeling (Sec-
tion 3.2).

3.1. Method of characteristics for SFS
Horn [20] uses the method of characteristics to solve SFS. Equation 2.3.4 is rewritten as

F (x,y,p,q,z) = E(x,y) −R(p,q) = 0 (3.1.1)

where z|Γ = ϕ|Γ for an initial curve Γ. Equation 3.1.1 is considered fully nonlinear. Without
further knowledge about the shape, we can only require E to be differentiable.

The method of characteristics states that we can reformulate the equation as an ODE system
of strips (x(s), y(s), p(s), q(s), z(s))

dx

ds
= d

dp
F = − d

dp
R

dy

ds
= d

dq
F = − d

dq
R

dp

ds
= − d

dx
F − p

d

dz
F = − d

dx
E

dq

ds
= − d

dy
F − q

d

dz
F = − d

dy
E

dz

ds
= p

d

dp
F + q

d

dq
F = p

d

dp
R + q

d

dq
R

(3.1.2)

Figure 3.1 – Flow of strips C (thin black curve) from the method of characteristics starting
from an initial curve Γ (thick black curve). The black dot corresponds to an initial point
(γ1, γ2, ψ1, ψ2, ϕ) from Γ. The dashed curve delimits the domain.

where we need to specify five initial conditions at the same initial curve Γ for characteristic
strips:

x|Γ = γ1|Γ

y|Γ = γ2|Γ

p|Γ = ψ1|Γ

q|Γ = ψ2|Γ

z|Γ = ϕ|Γ.

(3.1.3)

Figure 3.1 illustrates characteristic strips for an initial curve Γ.

We can interpret the orientation of a strip as two vectors in the intensity and reflectance
spaces. The gradient of the reflectance space is used in the intensity space and vice versa. In
itself, the gradient of reflectance R represents the direction of changes in brightness in the
tangent plane. Meanwhile, the gradient of intensity E is related to the direction of changes
in brightness from a given viewpoint.

32

Figure 3.2 – Geometric interpretation of the method of characteristics for SFS. On the
left, the plot depicts the intensity E. On the right, it depicts the reflectance R. Dashed
arrows represent the gradient for the reflectance while full arrows represent the gradient in
the intensity plane. Image adapted from [19].

The conditions at the boundary need to be admissible, which requires one point on the initial
curve x0,y0 ∈ Γ to respect

F (γ1,γ2,ψ1,ψ2,ϕ)|Γ = 0

ψ1|Γ = d
dx
ϕ|Γ

ψ2|Γ = d
dy
ϕ|Γ.

(3.1.4)

If all the points at the boundary are admissible and there exists an initial curve that is
non-characteristic such that[

− d
dp
R − d

dq
R
]

·
[
− d

ds
γ2

d
ds
γ1

]
̸= 0 (3.1.5)

a local solution exists for the strips near Γ.

We can go further than Horn [20] in analyzing the stability of Equation 3.1.2. Equation 3.1.2
can be characterized as a nonlinear autonomous system dx

ds
= f(x(s)) where x = (x,y,p,q) in

our specific case. The system has no explicit dependency on s. Let us assume that only one

33

peak of brightness (R(pe,qe) = 1 and E(xe,ye) = 1) is possible. At the peak intensity in the
image xe, we can trivially show that f(xe) = 0 because the gradient of E and R will be 0 at
the equilibrium point xe.

To find if the autonomous system is Lyapunov stable, we need to find a Lyapunov function
that will respect the following conditions

V (x) = 0 where x = xe

V (x) > 0 where x ̸= xe

∇V(x) · dx
ds

≤ 0 ∀x.

(3.1.6)

Let us consider the following function

Q(x,y,p,q) = 2 −R(p,q) − E(x,y). (3.1.7)

We seek to determine whether it is Lyapunov stable when there is a peak present in the
observed intensity.

At the equilibrium point, we can verify the first condition by evaluating Q(x,y,p,q) = 2 −
R(pe,qe) − E(xe,ye) = 2 − (1) − (1) = 0. Because there is only one peak, Q is bounded by
0 ≤ Q ≤ 4 and respects the second condition.

For the third condition, the intensity E is problem-dependent. We cannot predict how it
will behave. Instead, we will seek to find a way to respect the condition without requiring
an explicit function for it by assuming that E is defined and smooth.

∇Q(x) · dx
ds

≤ 0 (3.1.8)

−dR

dp
·
(

−dE

dx

)
− dR

dq

(
−dE

dy

)
− dE

dx
·
(

−dR

dp

)
− dE

dy
·
(

−dR

dq

)
≤ 0 (3.1.9)

2dR
dp

· dE
dx

+ 2dR
dq

· dE
dy

≤ 0 (3.1.10)

dR

dp
· dE
dx

+ dR

dq
· dE
dy

≤ 0 (3.1.11)

The solution will be at least Lyapunov stable in the region around the equilibrium where the
dot product between the gradient of R and the gradient of E at x is negative. In the presence
of multiple peaks, we can make the standard claim that the solution will be Lyapunov stable
locally around each peak.

34

The method of characteristics 1 is particularly compelling due to its inherent ease of im-
plementation. The characteristics strips are therefore well-suited for real-time applications.
However, a primary limitation of these techniques lies in their reliance on the accuracy of
initial values. This is because errors present at the onset tend to propagate throughout the
integration process, impacting the overall quality of the outcome.

3.2. Monster Mash Approach
In Monster Mash, Dvoroznak et al. [10] propose an algorithm to transform curves drawn
over separate layers by a user into a pleasant-looking mesh. In their original work, each
curve lie in a layer and the image plane. The user can alter the depth of each layer through
a keyboard input. Each curve Γcontour delimits a domain Ω where the line that connects two
endpoints corresponds to a special curve call Γconn. The interiors of each Ω are triangulated
through Delaunay triangulation by adding additional vertices in the interiors. We refer to
those triangulated interiors as faces. Each face is a triangle mesh with an orientation relative
to the image plane. Each layer has one front face and one back face. The front face and back
face are nearly identical. However, the vertices of each back face are ordered in reverse (i.e.,
clockwise) to have their normals pointing in the opposite direction, and their height flipped.

Stitching. Each pair of layers where Γconn lay over another Ω is stitched together. Then,
they insert the vertices from the face under Γconn into the other face. Depending on if the
layer is below or above, they stitch the vertices respectively with the front face or the back
face. A hole is made in the other face to keep it manifold. Triangles are then created from
the vertices under Γconn and the one where the vertices has been inserted. To stitch the front
faces and back faces into one mesh, new triangles are formed with the vertices under Γcontour

of each front face and back face (Figure 3.4).

Inflation. The mesh is inflated based on the method of Sykora et al. [60]. Sykora et al. [60]
use a linear system to retrieve the height:

Lz2 = k

s.t. zbnd = 0
(3.2.1)

where L is the cotangent Laplacian, k is the coefficient of inflation, and z is the height for
the vertices of each face. Two solutions are possible. In Monster Mash, they keep the one

1. For more detailed information on the method of characteristics, please refer to the book of Evans [12].

35

Figure 3.3 – Two faces are displayed, one with an orange contour and one with a black
contour. Each color is associated with a specific layer. A layer has two faces: front and back.
We display each face as a flat mesh for illustrative purposes. On the left, we can see the
front F (top) and back B (bottom) faces. We denote in black the contour Γcontour of region
Ω. A dashed line Γconn represents the segments of the shape that will be connected to other
layers. On the right, we emphasize their relative order from an alternative viewpoint. A
dashed segment Γcontour represents a segment that could potentially be merged between two
faces.

where the direction of z inflates toward the same direction as the face. Then, they take the
square root of the solution. It results in a semi-elliptical-like shape with a pleasing variation

36

in height except close to the boundary. We propose an improvement to make the transition
smoother from the boundary in Section 4.2.

Deformation. The mesh is deformed with a modified As-Rigid-As-Possible (ARAP) algo-
rithm to shift each vertices associated with a layer so that vertices at different layers do not
overlap. Originally, ARAP was introduced by Sorkine and Alexa [57]. The model can be
stated as

1
2 min

v,R

∑
i

∑
j∈N (i)

||(vi − vj) − Ri(v0
i − v0

j)||2 (3.2.2)

where the energy is minimized through a local pass and a global pass. In the local pass, they
minimize the objective by letting the rotation matrix R free and freezing vertices v. In the
global pass, they repeat the process, but they let v free and freeze R.

Dvoroznak et al. [10] introduce new inequality constraints into ARAP to shift vertices by
their respective layers:

zi ≥ zj ∀(i,j) ∈ C≥

zi ≤ zj ∀(i,j) ∈ C≤

zi = zj ∀(i,j) ∈ C=

(3.2.3)

C≥ is the set of vertices underneath Γcontour for the back faces that are above the nearest
vertices of the back faces below. C≥ is the set of vertices underneath Γcontour for the front
faces that are above the nearest vertices of the front faces below. C= is the set of vertices
under Γconn from the front face that should be at the same position as the vertices from the
below back face under Γconn (Figure 3.5). Other constraints can also be added to animate
the final mesh, but are off-topic to our method.

37

Figure 3.4 – On the top, we illustrate the stage where we stitch faces by their Γcontour. On
the bottom, we illustrate how we stitch the front and back faces together. On the top left,
the orange upper face is connected with the black face below at the dashed line Γcontour. The
vertices in the hole in red (thicker segment) have been removed to keep the mesh manifold.
On the top right, the orange front face is connected to the black front face. The black
arrow illustrates the connection between the two faces. No stitching is needed for back faces.
On the bottom left, the orange and black front faces are displayed in the same order. On
the bottom right, the front and back faces are connected through the black double-headed
arrows. The orange back face and black front face are not connected under Γconn. Otherwise,
the mesh would be non-manifold.

38

Figure 3.5 – On the left, the dots illustrate the constraint on the vertices that are part
of C≥ and C=. C≥ corresponds to the set of constraints where the z components of the
orange back face are above the z components of the black front face. C= is the set of vertices
under Γconn from the front face that should be at the same position as the vertices from the
below back face under Γconn. For a vertex on the contour of the orange face, we pick the
nearest vertex in the face below. On the right, the same dots illustrate how we impose the
constraints on the orange back face and the black front face.

39

Chapter 4

Methodology

In this chapter, we start with a short overview of our system (Section 4.1). Then, we start
elaborating on our method. After the planar mesh has been created by the user with our
system, the mesh is inflated using the method from Dvoroznak et al. [9, 10] (Section 4.2).
To isolate each change without affecting the rest of the mesh, we start by identifying regions
of the original mesh using the strips from the method of characteristics (Section 4.3). We
call it the impacted region. The region can extend outside of the band as it depends on the
characteristic strips. Then, we seek to use the method of characteristics to reconstruct the
final height. To proceed, we must define the resulting shading from redrawing the isophote.
We interpolate the new shading by fixing the value at the redrawn isophote and at the
boundary of the region common to the impacted region and the band (Section 4.4). The
method as described by Horn [20] is used to retrieve the height from our newly interpolated
shading (Section 4.5). The penultimate step involves the reconstruction of height from the
integrated strips (Section 4.6). Inspired by Monster Mash from Dvoroznak et al. [10], at
the end, we assemble each face into a single one (Section 4.7) using the relative order of the
layers being displayed.

Because we are working in a virtual environment, we can substitute the BRDF with an
equivalent function that accepts negative values. The consequence is that the gradient
of the reflectance is thus always defined at any point. In addition, we only support the
configuration where the light is orthogonal to the viewpoint direction. In other words, the
light can only lie in the plane orthogonal to the camera.

Figure 4.1 – State of the application at launch. The user add one canvas on which he or
she can draw a contour. The panel on the left corresponds to the menu. The panel on the
top right corresponds to the various controls for the mesh and the lighting direction. The
panel on the bottom right displays the ordered layers of canvases.

4.1. System Overview
The application launches with three panels and a drawing region in the center, as shown
in Figure 4.1. The bottom right panel lets users manage layers. Layers can be added and
removed using the "+" and "-" buttons respectively. Each layer has a canvas on which a
user can draw in the central drawing region. A miniaturized canvas is displayed for each
layer. Each canvas can have only one polyline that describes the contour of a mesh. The
user can choose to hide a selected layer, which hides anything related to that layer in the
drawing region. This makes it less distracting for the user when drawing on another canvas.
The panel on the left is the main menu. The radio buttons refer to the two modes for our
application. The "EDITING" mode activates the drawing region where the user creates and
edits meshes. In "EDITING" mode, the panel on the top right offers extra options to the
user. The "OBSERVATION" mode lets the user visualize the mesh in a 3D environment
through rasterization in the center of the screen where the drawing region is. To improve
visibility, we display the mesh with a flat shading that does not interpolate normals between
vertices; it uses the face normal instead. The user can move the camera around by using the
mouse to orbit around his creation. When he selects the "SCULPTURE" state, the user can
choose in the panel on the top right between various tools to edit the mesh. Currently, we
only support one tool which corresponds to our shading-based method.

42

Figure 4.2 – (Top) State of the application after having drawn a contour. A shaded mesh
is displayed in the drawing region. (Bottom) State of the application when changing the
light direction. The light direction can be changed by clicking down and moving the mouse.
The shading is properly updated by taking the segment between the mouse position and the
center of the drawing region. The light direction can only lie in the plane of the drawing
region.

At first, in "CREATION" state, the user adds one layer and draws a contour on the associated
canvas. The interior of the contour is triangulated into a mesh using the triangle library.
The first two coordinates of a vertex of the mesh represent the position of the vertex in the
image plane while the third coordinate represents its height from the image plane. The image
plane corresponds to an arbitrary plane in front of the camera where the normal of the plane
is aligned with the viewpoint. Each layer shares the same image plane. The newly created
mesh is associated with the layer and is inflated. The user can tweak the inflation using the

43

Figure 4.3 – (Top) State of the application after selecting the "SCULPTURE" state at
each step of the process using our system. (Top) The first step corresponds to choosing an
isovalue by clicking on the mesh and defining a range for the band in dashed orange. A white
isophote highlights the selected isovalue. (Middle) The user redraws an isophote within the
band. By experimenting with our system, the user gains knowledge about how redrawing
the isophote can affect the overall height. (Bottom) The edited mesh is displayed while the
user can move the camera around it.

44

top right panel in "CREATION" state. The newly created mesh is displayed at the same
position as the contour in the drawing region. The user can change the light direction by
clicking down and moving his mouse around the center of the drawing region after selecting
the corresponding button (Figure 4.2).

The shading editing tool is accessible through the "SCULPTURE" state (Figure 4.3). The
process begins by selecting a pixel in the image plane. The corresponding point in 3D has an
associated isophote value (i.e., n · l as explained in Section 2.3.1). The associated isophote
curve is displayed in white within a band surrounded by an orange dashed curve. The
isophote is extracted as a polyline on the triangle mesh, assuming that the three vertices of a
triangle have different normals. To retrieve it, we assume that the isovalue at each vertex is
used to interpolate isovalues across triangles using barycentric interpolation. If the isophote
traverses a triangle, it will intersect two of its edges. We compute the two points by linear
interpolation. The final isophote is encoded as an ordered list of the intersection points
along the edges of triangles. It is stored as a polyline that we call the selected isophote.
In our method, the shading can only be manipulated by directly editing isophotes. Other
drawing techniques, such as pointillism, are avoided because they require more advanced
artistic knowledge about shading. By minimizing the number of inputs that a user needs
by editing isophote directly, we aim to make our tool easier to use and more accessible for
casual 3D modeling.

The user can make the band around the selected isophote wider or narrower with a parameter
to control the range. It delimits the zone where the new isophote can be redrawn. This band
represents the area where the new shading can be affected by the redrawn isophote. Outside
of this band, the shading will remain untouched. The user can redraw the isophote until he
or she is satisfied.

4.2. Inflation
To inflate the mesh from its contour Γcontour (Figure 4.4), we use the approach from Dvoroz-
nak et al. [9] where the mesh is inflated using a linear system as described in Section 3.2.

As we take the square root of z from Equation 3.2.1, the height near Γcontour tends to become
jerky with an elevation that is too steep. We smooth the height z using the Weinkauf

45

Figure 4.4 – The white line corresponds to the selected isophote. The cyan line corresponds
to the redrawn isophote Γiso. The two orange dashed curves delimit the band. The dashed
curves in black delimit region Ω∗. The grey curves are the strips computed from the known
reflectance. The flat shading allows a better perception of the resulting underlying mesh.

method [64]

min
z
Efairing(z) = min

z
αE(z) + (1 − α)

∫
Ω

||z(x) − z0(x)||2dx (4.2.1)

where z0(x) represents the original height. The minimization can be discretized as

min
z

zT (αE + (1 − α)M)z − ((1 − α)z0
T M)z (4.2.2)

using the Galerkin method where E(z) is assumed to be quadratic. Equation 4.2.2 can be
solved through convex optimization. α is one of the parameters that the user can use to
tweak inflation and influences the smoothness of the resulting z. We found that α = 2×10−5

produces satisfying results.

Recently, Stein et al. [58] presented energy that can be used for smoothing
1
2

∫
Ω

||∇z||2dA Dirichlet (4.2.3)

1
2

∫
Ω
(∆z)2dA Squared Laplacian (4.2.4)

1
2

∫
Ω

||H(z)||2FdA Hessian. (4.2.5)

Using the Galerkin method, each energy can be discretized as

zLz Dirichlet (4.2.6)

zLM−1Lz Squared Laplacian (4.2.7)

zGTADM̃−1DTAGz Hessian (4.2.8)

46

where M is the mass matrix, G is the gradient, A is the diagonal matrix of the area of each
triangle, D is the divergence matrix, and M̃−1 is a matrix where the inverse of the mass
matrix is repeated four times along its diagonal 1. Because the Hessian energy is only useful
if the boundary conditions are not specified, we chose the squared Laplacian to smooth out
the height.

4.3. Bounded Band and Impacted Region
In our method, the shading is altered locally. This makes it unnecessary to compute the
height of vertices that are not affected when redrawing an isophote. Confining the region
reduces computations and inaccuracies that can arise from our method. We start by iden-
tifying the bounded band where we interpolate the shading using the new isophote and the
impacted region that will restrict the area where we integrate the strips and reconstruct the
final mesh.

The strips from the method of characteristics are dependent on the gradient of the re-
flectance R and of the intensity E. This observation suggests that they can be used to
pinpoint the area affected by the new isophote.

In our specific case where the light can only lies in the plane, we can deduce that every strip
entering the contour of the mesh must leave it. Indeed, no normals for an implicit shape
z(x,y) can be perfectly aligned with the light direction which indicates that no strips should
end at a peak of intensity. We can measure the flux traversing a domain with the following
contour integral ∮

∂Ω
−∇p,qR(p(t),q(t)) · n(t) dt (4.3.1)

where R is the reflectance and n is the normal along the curve in the plane.

Using Green’s theorem, we can transform this integral into

−
∫∫

Ω
∇x,y · ∇p,qR(p(x,y), q(x,y)) dA (4.3.2)

The amount of flux entering and quitting the domain cancels out (Equation 4.3.1) ∇x,y ·
∇p,qR = 0. Every strip thus enters and leaves the domain Ω.

1. More information can be retrieved on the different matrices in the annex of the original paper of Stein
et al. [58]

47

Figure 4.5 – On the left, regions S and S• in blue represent the area covered by the
strips intersecting the isophote Γiso. In the center, regions B and B• in green represent the
bounded band. On the right, regions M and M• in purple represent the impacted area. At
the top, each colored region represents the exact region while at the bottom, they are the
approximated regions enclosed by the sampled strips.

The strips will traverse through two different points at the boundary, when they enter and
leave the domain. However, knowing that Equation 3.1.1 is up to a constant, it is ambiguous
which point should be used as an initial value. Indeed, characteristics strips can be integrated
from the opposite direction which implies that two different initial conditions can be used.
Without further constraint and assumption on the boundary, we take the one that would
reach a peak of intensity if the light was not in the plane. We estimate that having the
strips end at the boundary of the domain gives better visually results. Further investigation
is needed to determine how we could use both initial conditions.

More formally, the method of characteristics needs to have an admissible initial curve (recall
Equation 3.1.5). If we discard the points that are not admissible, multiple disconnected
curves can give different results. When the shading is from a well-formed mesh, all initial
curves should give the same result on the region where they overlap. However, if the shading
is not from a well-formed mesh, we cannot guarantee that it will converge to the same
outcome. We found that starting from the curves where −∇R · n > 0 produces compelling

48

Figure 4.6 – Each figure illustrates a step to approximate M . The region in gray corre-
sponds to S•. On the left, in green, we highlight ∂B•, and in blue, the part of ∂B• that is
common to S•. The normal of each segment nseg is displayed in green. On the center, the
two curves result from discarding ∂B• ∩ ∂S•. The curve in red is discarded because the dot
product is negative. On the right, we fragment S• and discard the region in red because Γiso

does not lie inside.

results that are intuitively and coherent with the changes in shading, but further investigation
would be needed.

When a section of a strip traverses a region where the intensity E has been modified, its
height will likely be modified too. The rest of the strip is not valid anymore and must be
recomputed. Since we want to identify the region that is impacted by the change in shading,
we compute the strips with the following ODE system by starting from the contour of the
mesh

dx

ds
= −Rp(p,q)

dy

ds
= −Rq(p,q)

(4.3.3)

where p and q are known at any given point on the surface.

For each point of the strips that do not intersect exactly with a vertex of a triangle, the values
are computed using barycentric interpolation from values at the vertices. The strips from
Equation 4.3.3 should never overlap because otherwise, Equation 3.1.2 would have multiple
solutions, which is a contradiction.

The ODE can be solved efficiently using a simple Euler integration scheme. We found that
more advanced integration schemes did not significantly improve the results, but did have
an impact on performance. For this reason alone, we stick with a simple integration scheme.

49

In our method, the band area corresponds to the Minkowski sum between the selected
isophote and a circle of radius equal to the range value in the panel. The band represents
the area where the user can redraw the new isophote. The strips from the method of
characteristics intersecting the new isophote form region S (Figure 4.5). The band area that
is common to S corresponds to the new region B (Figure 4.5). To find the impacted region
M (Figure 4.5), we consider the part of the strips that are affected after traversing region B.
Small variations near ∂Ω can greatly impact the overall quality due to the steep increase in
height over a small distance in the image plane. To reduce the impact of the small variations
in height, we discard a small portion of the area outside of Ω⋆. We use the superscript ⋆ to
identify those reduced regions.

In practice, we compute a finite number of strips. We consider that strips in the region
between sampled adjacent strips follow similar paths. We find which sub-region the new
isophote intersects and use it to approximate region S. Since the new isophote is continu-
ous, those subregions with adjacent non-intersect strips are merged into one fully connected
region S•.

Instead of using the exact region S, we use the common area of S• with the band to determine
the approximated region B•. We refer to B⋆

• as the bounded band. To find the approximated
impacted region M• (Figure 4.6), we know that it will be a subregion of S• and will traverse
∂B•. It is convenient to represent B• by its contour. The contour is discretized through
the ordered counterclockwise segments so that each normal segment (here tangent to the
surface) points inward. To reduce unnecessary computations, we do not consider the parts
of ∂B• that do not overlap with ∂S• and ∂Ω. Since sampled strips are used as delimiters,
they do not traverse B• by definition. The process should result in two curves. By taking
the extremity of the remaining curves, we discard the ones where −∇R · nseg < 0 between
the direction of the strips and segment normal. It implies that a strip traverses B•. The
curve is used to fragment S•. M• is the region where Γiso lies.

4.4. Localized Shading Interpolation
The method of characteristics requires the gradient of the intensity to be properly defined
over the whole region of integration. Because the user redraws only a portion of the isophote,
we interpolate locally the intensity inside the bounded band. We triangulate the area into
a mesh by imposing that the redrawn isophote vertices from the polyline are all part of the

50

Figure 4.7 – By triangulating the inner region of the bounded band B⋆
• in green, we

interpolate the value through the boundary by fixing the intensity at the vertices at the
boundary ∂B⋆

• and at the vertices under isophote Γiso. The triangulated area illustrates the
shading in grey after interpolation.

mesh. Then, we fix the intensity at the boundary ∂B⋆
• and the vertices issued from the

redrawn isophote. We interpolate the intensity in the triangulated mesh inside of B⋆
• . We

compute the intensity e of the remaining vertices from the distinct mesh using

min
e

eT LM−1Le

s.t. eΓiso = ciso

e∂B = g∂B

(4.4.1)

where ciso is the intensity of the selected isophote, and g∂B corresponds to the intensity at the
boundary found using barycentric interpolation from the original mesh intensity (Figure 4.7).

When integrating the strips, we sample the shading intensity e from the bounded band mesh
when the strips pass through it. Otherwise, we sample the shading from the original mesh.

4.5. Strip Integration
Now that we have identified the impacted region and interpolated the shading in the bounded
band area, we are ready to integrate along the strips using the same ODE system as Horn [20]
used (Equation 3.1.2).

To integrate our system, we need to provide initial conditions. Because we only want to
recompute the height in the impacted region M•, we start from the boundary ∂M where the
strips cross (Figure 4.8). In practice, we can use the curve that we used to separate S• to
form M• as explained in Section 4.3 and the part of ∂Ω that overlaps ∂S•. The remaining

51

Figure 4.8 – Each green dot is a point used as an initial condition when its strip is integrated.
The newly computed strips are in black. Each strip has been computed through a numerical
solver. The black dots represent positions at different integration steps.

initial conditions p, q, and z are computed using barycentric interpolation from the original
mesh. To ensure that the strips cover the impacted region, we sample at regular intervals
on the section of ∂M• where the strips cross.

In the original formulation of SFS, the boundary normals will lie in the plane because the
boundary is occluding the rest of the mesh. However, this formulation is problematic for p,q
coordinates because they cannot be used to represent normals that lie in the plane. Instead,
the boundary normals are interpolated from adjacent triangle normals. Each triangle normal
will never be perpendicular to the viewpoint.

To solve numerically the ODE system, we end up using an A-L stable 2implicit solver from
Kvaerno [29] with an accuracy of 5th order and with an adaptive step size of 4th order. The
paths of strips are terminated when they reach the peak of intensity or when they exit region
M•, which can arise if numerical errors accumulate through integration.

4.6. Shape Reconstruction
At this point in the process, the strips have been integrated, and we want to compute the
height for the distinct mesh based on the newly computed strips.

Berger et al. [3] present a very comprehensive survey on a large array of reconstruction
techniques. In our work, we focus on the radial basis function (RBF) method for its flexibility
and general adoption. RBF can also be used beyond reconstruction for interpolating data.

2. More on the concept of stability for solving ODE in the book of Haiter et al. [18]

52

The RBF method builds a basis around a set of support points to interpolate a value at query
points. In our method, the set of support points is composed of the first two coordinates
from the integration steps for solving the ODE system (black dots in Figure 4.8) The first
two coordinates of the vertices outside of M• are seamlessly integrated into the set. The
third coordinates from the integration step and the vertices outside of M• are the height to
be interpolated. The query points are the first two coordinates of all of the vertices of the
original mesh.

The basis can be found by solving the following linear system

(K + λsmoothI)a = z (4.6.1)

where λsmooth is a smoothness factor, a is a weighted coefficient for each support point, and z
is the height at the corresponding support points. Note that z and a are in bold to indicate
a vector of values or points. Each entry of the kernel matrix K computes the radial basis
ϕ(x,y), where x ⊆ R2 and y ⊆ R2, between two points from the set of support points.

Possible choices for the radial basis function ϕ(x,y) can be

ϕm(x,y) = −
√

1 + ||x − y||22 Multiquadratic (4.6.2)

ϕg(x,y) = exp
(

−||x − y||22
2σ

)
Gaussian. (4.6.3)

To interpolate height at a set of query points, we retrieve it with

z(q) = K∗a (4.6.4)

where K∗ is from the set of query points and the set of support points.

In our case, we found that λsmooth = 0.05 and a multi-quadratic kernel produces decent
results.

4.7. Assembling Layers
At this stage, the user has created and edited a number of mesh layers and is ready to
assemble all mesh layers into a single mesh. We expand on the algorithm of Dvoroznak et
al. [10] from Monster Mash to assemble each layer. In their work, Dvoroznak et al. [10]
assemble each layer through a single pass where they consider at the same time the front
face and its back face. However, we observed that we can process the front and the back faces
into two separate passes and stitch them further along by preserving the height of each mesh

53

instead of inflating it. Afterward, we bridge each front face and its back face together at
their contour Γcontour. Then, the vertices of each layer are shifted by using different inequality
constraints to reduce interpenetration. We take special care to ensure that the approach of
Dvoroznak et al. [10] is compatible with our method.

We start with the top of all front faces. We detect if a part of Γconn at the current face
intersects one of the front faces below. We also make sure that the same part Γconn does
not intersect two different faces below. We repeat the procedure for the next faces. We
end up with pairs of faces to be stitched together (f i

u, f
i
l) at Γi

conn where u is for upper, l
is for lower, and i refers to the current pair. For each pair, we make a hole in the face f i

l

where Γi
conn is intersecting. Otherwise, we would end up with a non-manifold mesh. The

creation of the hole introduces new vertices in the layer f i
l . As the new vertices need to be

assigned a height, it is computed from the original mesh using an RBF interpolation at the
new vertices. Then, we stitch the vertices of f i

u with f i
l that lay at Γi

conn. For the back faces,
we use the same procedure. Indeed, it is equivalent to stitching them with a viewpoint from
the opposite side. The top of the front faces becomes the bottom of the back faces.

At this stage, we have connected front and back faces at Γconn respectively. Each vertex
for the front and the back faces at Γcontour share vertices at the same position in the image
plane xy by symmetry. We then trivially bridge and triangulate the front and back faces
together at their boundary. To make it aesthetically more pleasing, the front face of each
layer is displaced above its back face by a small margin, making the vertices at Γcontour

non-self-intersecting. This stage is nearly identical to the approach of Dvoroznak et al. [10].

Instead of using the same inequality constraint as Dvoroznak et al. [10] as explained in
Section 3.2, we found that we could reduce the number of constraints while keeping the
same visual outlook on the shape. In their work, C≥ is the set of vertices at Γcontour of the
front face which is on top of the vertices of the front face below. Instead, we rearrange it to
be the vertices at Γcontour of the back face being on top of the nearest vertices of the front
face below. Similarly, C≤ becomes the set of vertices at Γcontour of the front face behind the
nearest vertices of the back face above. We found that the constraint set C= is unnecessary
for our method (Figure 4.9). For each set, the nearest vertices can be found using a standard
K-nearest neighbors algorithm on the projected vertices in the image plane. Similarly to
Dvoroznak et al. [10], we could have reused their approach to animate the mesh.

54

Figure 4.9 – On the left, the dots illustrate the constraint on the vertices that are part of
C≥. C≥ corresponds to the set of constraints where the z components of the orange back
face are above the z components of the black front face. For a vertex on the contour of
the orange face, we pick the nearest vertex in the face below. On the right, the same dots
illustrate how we impose the constraints on the orange back face and the black front face.

55

Chapter 5

Results

In this chapter, we provide an overview of our results. We present several cases to illustrate
how different parameters affect the results and compare our results to those of Monster
Mash from Dvoroznak et al. [10]. Instead of rewriting basic operations, we relied on several
libraries. We implemented our system using Jax [7] for accelerating computations on GPU,
and Diffrax [26] for providing ODE solvers based on Jax. Libigl [23] and Gpytoolbox [55]
simplified geometry processing tasks. Shapely [15] was used for boolean processing and basic
geometric queries in 2D. ModernGL and SDL were used to render our application and create
an interactive experience. Cairo allowed us to draw polylines into a texture. ImGUI helped
to create the interface.

As demonstrated in Figure 5.1, we investigate the effects of modifying isophotes at two
different isovalues. Our findings reveal that for an isophote R = 0, the decrease in height
occurs more slowly compared to an isophote R > 0, as both cases illustrate. Interestingly,
even when changes in shading appear subtle, as seen in the last row and columns of Figure 5.1,
the corresponding changes in height can be quite pronounced. In some instances, these
changes are so significant that they cause strips to dip below the xy plane. To reduce
such artifacts, we cap the strip height to 0 when the value is negative, which can explain
the dark region at the top right corner of the "pillow" and "m" meshes. This phenomenon
can be explained by the inaccuracy arising from our integration scheme and the fact that
the newly interpolated shading is not guaranteed to be associated with a shape that has
its boundary lying in the image plane. Another difference lies in the size of the impacted
region. A strip will invariably intersect the R = 0 isophote before it reaches an isophote
R > 0. Consequently, the impacted region for a redrawn isophote at R = 0 is going to

Figure 5.1 – On the left, we show our method on a convex "pillow" shape. On the right,
we show our method on a concave "m" shape. The rows show the original shading for the
mesh (top) and after editing for isophote R = 0 (middle), and isophote R > 0 (bottom).
The column at the center of both shapes shows the meshes from the light direction. The
column at the right shows the meshes from a different viewpoint. For each experiment, we
used a radius of 0.3 and a light direction l =

[
1√
2

1√
2 0

]T

. Isophotes R > 0 are harder to
distinguish. To make it easier, we display the shading using a cell shading with three tones.

be broader. When dealing with a redrawn isophote R > 0, fewer steps are necessary for a
numerical solver compared to an isophote at R = 0. It implies that numerical errors have
less opportunity to accumulate in the case of isophote R > 0, potentially leading to more
accurate and reliable outcomes. However, we found that it is more intuitive to modify the
isophote at R = 0 due to deformation being easier to predict. As observed in the perceptual
study of Xu et al. [67], redrawing accurately isophotes can be challenging. Most artists can
reproduce how isophotes behave, but struggle to draw them for specific isovalues, which is
needed to produce precise and desired results with our method.

In Figure 5.2, we illustrate the impact that varying the range of the band has on the recon-
structed height. Increasing the range of the band extends the area over which shading is
interpolated. The interpolation, however, does not account for the curvature of the mesh,

58

Figure 5.2 – The shaded columns depict the shading from reference mesh before (top left)
and after being edited in our system. Each shape has been edited with the same new isophote
with different radiuses for the bounded band: 0.2 (bottom left), 0.5 (top right), 0.8 (bottom
right). The remaining columns provide an alternative view of the mesh associated with the
shaded columns. For each of them, the light is set at l =

[
1√
2

1√
2 0

]T

.

leading to potential distortions. High values for the band, even if the shading does not ap-
pear to be visually altered much, can have a non-intuitive impact on the shape. Having the
boundary condition set tighter around the isophote implies that we can make the area of
interpolation smaller and neglect those distortions, but the change in height is less visually
perceptible. Furthermore, predicting the behavior of the strips near the mesh boundary is
challenging. Extending the radius of the band to the boundary of partial Ω∗ can result in
unexpected modifications in height in certain areas of the mesh, emphasizing the complex
relation between shading and height.

Figure 5.3 demonstrates the influence of the mesh resolution on the quality of our solution.
The second column of this figure highlights how varying resolutions impact the shading. The
number of vertices, and therefore of query points, is larger, which makes reconstructing the
height from strips smoother. The shading becomes smoother too. A higher resolution leads to
a larger number of triangles in the mesh, which in turn increases the computational demands
of our algorithm. This is because our algorithm’s complexity is directly linked to the number
of triangles in the mesh. On the upside, a high-resolution mesh with more triangles allows for
more accurate barycentric interpolation between vertices. This finer interpolation reduces
bias in our solution, resulting in a more accurate and visually appealing representation.

59

Figure 5.3 – The shaded columns depict the shading from reference mesh before (top left)
and after being edited in our system. For each row except the top left, we present the results
for low (210 vertices and 375 triangles), medium (389 vertices and 723 triangles), and high
(782 vertices and 1488 triangles) resolutions. The remaining columns provide an alternative
view of the mesh associated with the shaded columns. For each of them, the light is set at
l =

[
1√
2

1√
2 0

]T

, we used the same new isophote and a radius of 0.3.

In Figure 5.4, we showcase the application of multiple iterations of our method to intricately
edit a shape and modify its height profile. Our process involves interpolating shading based
on the boundary of the bounded band ∂B⋆

• . However, this can inadvertently eliminate finer
details, emphasizing the need for careful consideration of the range used in each iteration.
As we progress through each iteration, the shading complexity of the shape increases, as
depicted by the white line on each shape. This increase in complexity is directly linked
to the evolving complexity of the overall distributions of height on the shape. A notable
example is iteration e) applied to a convex shape, where the isophote becomes less apparent,
making it challenging to discern. This complexity in shading interpretation can lead to
non-trivial adjustments, and in some cases, unintended modifications. This is particularly
evident in iterations j), k), and l) on the concave shape, where these complexities result in
alterations that might not align with the intended outcome. Indeed, complex height profiles
create complex shading, which in turn makes it difficult to intuitively understand how the
shape will be altered. The shading at iterations e) and f) can illustrate how such phenomena
can arise. The white isophote does not behave intuitively, which makes the bounded band
much larger than one would have wanted. The resulting characteristic strips of such shading
can reach different regions of the shape, which can result in unexpected behavior.

60

Figure 5.4 – We showcase two distinct series of edits on two types of shapes: convex (top)
and concave (bottom). Each series is labeled as rows a sequential iteration of our method.
In the bottom-left corner of each sub-figure, we include a drawing that illustrates the specific
modifications (modified isophote) made to the shading at that particular stage of our editing
process.

61

Figure 5.5 – In orange, the result from Monster Mash by Dvoroznak et al. [10]. In blue,
the result of our method after multiple iterations. Our method provides additional control
compared to Monster Mash [10]. The specular reflection is added to improve shape percep-
tion, but it is not part of our method.

Comparing our method to Monster Mash from Dvoroznak et al. [10], Figure 5.5 illustrates
the enhanced capability for a user to create more refined height variations. Using our tech-
nique, the user was able to achieve several modifications on the toucan-like mesh. These
modifications include slimming down the beak, enlarging the belly, slightly carving a tail,
and flattening the wing. Each of these alterations contributes to a more convincing and
nuanced shape. This comparison highlights the advantages of our method over Dvoroznak
et al. [10] proposition, especially in terms of the level of control it offers. However, even if it
is used successfully, the tool can be challenging for casual 3D modeling. Altering a shape is
not straightforward due to the underlying complexity of shading.

Our method specifically restricts users from altering shading for light sources not lying in
the drawing plane, as doing so is not robust and can negatively impact the quality of the
results. Reconstructing height from various light directions significantly affects the outcome.
In Figures 5.6 and 5.7, the height was reconstructed for the whole region by starting the

62

Figure 5.6 – Reconstruction of height utilizing the method of characteristics, initiated from
the boundary of the shape. The top left image exhibits the reference to be reconstructed.
Each column represents the light source direction l:

[
1√
2

1√
2 0

]T

,
[

1√
3

1√
3

1√
3

]T

, and[
0 0 1

]T

. The strips from the method of characteristics are trimmed in the top row and
untrimmed in the bottom row. An inset at the bottom left corner of each image displays a
color-coded height map based on the variation of height compared to the reference mesh.

integration from the boundary. A key observation from the last row for each shape is that
as strips approach a peak in the geometric model, they begin to diverge in height, leading to
spikes in the reconstructed mesh. This divergence can be mitigated by trimming the strips
that cross over each other in the image plane, a technique that we have used to enhance
results as shown in the first row of each series. We discard the strips that diverge above
the ones below in their z coordinates. Notably, when the light source is in the plane, we
avoid trimming the strips. Although they may cross in the image plane, this does not
substantially impair height reconstruction, and trimming in such cases would excessively
prolong computation time.

In addition, using an alternative formulation for Lambertian reflectance, we rewrote the
problem as

F (x,y,p,q) =
√

(1 + p2 + q2)E(x,y) − (−lxp− lyq + lz) (5.0.1)

63

Figure 5.7 – Same configuration than in Figure 5.6, but for a concave shape with a higher
resolution.

which led to the following system of equations using the method of characteristics

dx

ds
= p√

1 + p2 + q2
E + lx

dy

ds
= q√

1 + p2 + q2
E + ly

dp

ds
= −

√
1 + p2 + q2dE

dx
dq

ds
= −

√
1 + p2 + q2dE

dy

dz

ds
= p

(
p√

1 + p2 + q2
E + lx

)
+ q

(
q√

1 + p2 + q2
E + ly

)
.

(5.0.2)

As we can see, strips can be integrated without explicit dependence on lz. We believe that
the divergence of our solution, especially when the strips get closer to a peak, is a result
of the integration being influenced by both shading and mesh geometry, and not directly
linked to the inclination of the light. Interestingly, when applying the same equations to
implicit shapes outside of our system, where shading at each point is precisely defined as
opposed to a triangle mesh, the method performs better. It suggests that the smoothness
of our surface plays a major role in the integration process. We did not observe a particular

64

difference between Equations 3.1.2 and 5.0.2. We kept the latter because the formulation is
more general.

65

Chapter 6

Conclusion

In our work, we have explored a method for artists to edit meshes using a non-traditional
approach. Traditional tools for 3D creation have a steeper learning curve before being effec-
tively used. We offer a method that relies on sketching to indirectly edit the height of a mesh
using methods developed for SFS. We employ the method of characteristics from Horn [20]
to identify affected regions, and recompute heights from shading using characteristic strips.
We elaborate on the mathematical and algorithmic framework that allows our interactive
system to sketch isophotes on meshes created and inflated from their contours. Meshes from
different layers are assembled into one pleasant-looking mesh based on the framework of
Dvornozak et al. [10]. We show and discuss results created with our method.

Our method presents a few limitations. We cannot use a light source direction that does
not lie in the plane of the drawing canvas, which makes our method less flexible and less
intuitive. If the number of characteristic strips does not cover the domain uniformly when we
try to identify various regions, which can arise for complex shading, it can result in regions
that are larger than they should be. To retrieve the height from the characteristic strips,
we interpolate the height from the sampled integration step into each vertices of the mesh
being edited using RBF interpolation. The interpolation can fail to interpolate the height
properly on the existing mesh because of a lack of points or of too much space between each
strip due to the fall-off associated with multi-quadratic kernels. Interpolating the shading
in the bounded band offers no guarantee that the newly interpolated shading will produce
a shape that respects that the boundary lies in a plane. Lastly, by keeping one specific
orientation for our characteristic strips, we limit the part of the boundary that can be used
as an initial curve instead of using the complete boundary. Although using isophotes is an

intriguing approach to editing shading, it is not as straightforward as we were hoping due to
the complexity of shading. Altering the shading can result in non-intuitive behavior. Future
research is necessary to alleviate such current limitations. We will elaborate on multiple
avenues to extend our method.

Future Work. In addressing the challenges of Shape-From-Shading (SFS), we propose ex-
ploring alternative solutions beyond traditional reliance on characteristics. A promising ap-
proach involves solving the Hamiltonian-Jacobian formulation of SFS. This can be achieved
through an iterative process, transforming our problem into an eikonal equation by fixing
parameters. Recently, there has been a focus on the potential of machine learning in various
fields, which could be utilized in SFS. We have observed that the reconstruction of height
in SFS is significantly impacted by the smoothness of underlying shading, a factor that may
prove insufficient under certain lighting conditions. Exploring neural ODE [8] in this con-
text offers an interesting prospect. To effectively train the neural network, one could utilize
strips derived from Equation 4.3.3 as a training dataset. The training dataset could be from
scanned deformable surfaces where each surface would have a different isophote for a known
shape and light direction.

Beyond SFS, there have been notable advancements in Generative AI, addressing similar
challenges. However, these developments often rely on inputs based on real-life scenery,
contrasting with the stroke-based inputs typical in sketching. This discrepancy raises the
issue of dataset reliability, as sketching encompasses a wide range of styles. Despite these
challenges, investigating the application of Generative AI techniques in sketch-based SFS is
a compelling avenue for future research.

Our current method for SFS supports the alteration of one isophote at a time. An extension
of our work could handle multiple changes simultaneously. Presently, our approach is limited
to creating meshes by inflating their contours. One could expand this method to work with
arbitrary meshes rather than just altering heights of meshes from a plane. Unfortunately,
occlusion remains a major issue to overcome. We could address this by altering the shad-
ing within the intrinsic space of the mesh where the strips would be perfectly continuous.
Implementing UV parameterization could be a viable solution for achieving this task.

Moreover, our method has so far been applied only to Lambertian reflectance. Accommo-
dating more complex reflectance models, including both physical and non-physical BRDFs,

68

represents another avenue. Sketching, in particular, often employs non-photorealistic re-
flectance models. Investigating a broader spectrum of reflectance models and exploring how
our method could be adapted to go beyond Lambertian reflectance would be an interesting
area of research.

We neglected how real artists perceive changes in shading as a shape changes. It would be
crucial to have an in-depth user study of all the implications of getting real artists in the
loop and providing closer measurements and expectations in various shape-lighting-shading
configurations.

69

References

[1] Jonathan T. Barron and Jitendra Malik. Shape, Illumination, and Reflectance from Shading, October
2020. arXiv:2010.03592 [cs].

[2] Harry Barrow, J Tenenbaum, A Hanson, and E Riseman. Recovering intrinsic scene characteristics.
Comput. vis. syst, 2(3-26):2, 1978.

[3] Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Gaël Guennebaud, Joshua A.
Levine, Andrei Sharf, and Claudio T. Silva. A Survey of Surface Reconstruction from Point Clouds.
Computer Graphics Forum, 36(1):301–329, January 2017.

[4] James F. Blinn. Models of light reflection for computer synthesized pictures. In Proceedings of the 4th
annual conference on Computer graphics and interactive techniques, pages 192–198, San Jose California,
July 1977. ACM.

[5] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Levy. Polygon Mesh Processing. A
K Peters/CRC Press, Natick, Mass, 1st edition edition, October 2010.

[6] Frederic Boudon, Christophe Pradal, Thomas Cokelaer, Przemyslaw Prusinkiewicz, and Christophe
Godin. L-Py: An L-System Simulation Framework for Modeling Plant Architecture Development Based
on a Dynamic Language. Frontiers in Plant Science, 3, 2012.

[7] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX:
composable transformations of Python+NumPy programs, 2018.

[8] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary Differ-
ential Equations, December 2019. arXiv:1806.07366 [cs, stat].

[9] Marek Dvorožňák, Saman Sepehri Nejad, Ondřej Jamriška, Alec Jacobson, Ladislav Kavan, and Daniel
Sýkora. Seamless reconstruction of part-based high-relief models from hand-drawn images. In Proceed-
ings of the Joint Symposium on Computational Aesthetics and Sketch-Based Interfaces and Modeling
and Non-Photorealistic Animation and Rendering, pages 1–9, Victoria British Columbia Canada, August
2018. ACM.

[10] Marek Dvorožňák, Daniel Sýkora, Cassidy Curtis, Brian Curless, Olga Sorkine-Hornung, and David
Salesin. Monster mash: a single-view approach to casual 3D modeling and animation. ACM Transactions
on Graphics, 39(6):1–12, December 2020.

[11] Ady Ecker and Allan D. Jepson. Polynomial shape from shading. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 145–152, San Francisco, CA, USA,
June 2010. IEEE.

[12] Lawrence C. Evans. Partial differential equations. Number v. 19 in Graduate studies in mathematics.
American Mathematical Society, Providence, R.I, 2nd ed edition, 2010. OCLC: ocn465190110.

[13] Filippo Andrea Fanni, Fabio Pellacini, Riccardo Scateni, and Andrea Giachetti. PAVEL: Decorative
Patterns with Packed Volumetric Elements. ACM Transactions on Graphics, 41(2):1–15, April 2022.

[14] R.T. Frankot and R. Chellappa. A method for enforcing integrability in shape from shading algorithms.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):439–451, July 1988.

[15] Sean Gillies, Casper van der Wel, Joris Van den Bossche, Mike W. Taves, Joshua Arnott, Brendan C.
Ward, and Others. Shapely, October 2023.

[16] Yotam Gingold and Denis Zorin. Shading-based surface editing. In ACM SIGGRAPH 2008 papers,
SIGGRAPH ’08, pages 1–9, New York, NY, USA, 2008. Association for Computing Machinery.

[17] J. Hadamard. Sur les problèmes aux dérivés partielles et leur signification physique. Princeton University
Bulletin, 13:49–52, 1902. tex.citeulike-article-id: 7133163.

[18] E. (Ernst) Hairer and Gerhard. Wanner. Solving Ordinary Differential Equations II : Stiff and
Differential-Algebraic Problems. Springer Series in Computational Mathematics, 0179-3632 ; 14.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1991.

[19] Berthold K. P Horn and Michael J Brooks. The variational approach to shape from shading. Computer
Vision, Graphics, and Image Processing, 33(2):174–208, February 1986.

[20] Berthold KP Horn. Shape from shading: A method for obtaining the shape of a smooth opaque object
from one view. 1970.

[21] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: a sketching interface for 3D freeform
design. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’99, pages 409–416, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[22] Katsushi Ikeuchi and Berthold K. P. Horn. Numerical shape from shading and occluding boundaries.
Artificial Intelligence, 17(1):141–184, August 1981.

[23] Alec Jacobson, Daniele Panozzo, and others. libigl: A simple C++ geometry processing library, 2018.

[24] James T. Kajiya. The rendering equation. ACM SIGGRAPH Computer Graphics, 20(4):143–150, 1986.

[25] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 3D Gaussian Splatting
for Real-Time Radiance Field Rendering. ACM Transactions on Graphics, 42(4):139:1–139:14, 2023.

[26] Patrick Kidger. On Neural Differential Equations, February 2022. arXiv:2202.02435 [cs, math, stat].

[27] Ron Kimmel and Alfred M. Bruckstein. Tracking Level Sets by Level Sets: A Method for Solving the
Shape from Shading Problem. Computer Vision and Image Understanding, 62(1):47–58, July 1995.

[28] Ron Kimmel and James A. Sethian. Optimal Algorithm for Shape from Shading and Path Planning.
Journal of Mathematical Imaging and Vision, 14(3):237–244, May 2001.

[29] A. Kværnø. Singly Diagonally Implicit Runge–Kutta Methods with an Explicit First Stage. BIT Nu-
merical Mathematics, 44(3):489–502, August 2004.

72

[30] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, May
2015. Number: 7553 Publisher: Nature Publishing Group.

[31] Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang. BendSketch: modeling
freeform surfaces through 2D sketching. ACM Transactions on Graphics, 36(4):125:1–125:14, 2017.

[32] Aristid Lindenmayer. Mathematical models for cellular interactions in development I. Filaments with
one-sided inputs. Journal of Theoretical Biology, 18(3):280–299, March 1968.

[33] P. L. Lions, E. Rouy, and A. Tourin. Shape-from-shading, viscosity solutions and edges. Numerische
Mathematik, 64(1):323–353, December 1993.

[34] Claudio Mancinelli, Giacomo Nazzaro, Fabio Pellacini, and Enrico Puppo. b/Surf: Interactive Bézier
Splines on Surface Meshes. IEEE Transactions on Visualization and Computer Graphics, 29(7):3419–
3435, July 2023.

[35] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. A data-driven reflectance
model. ACM Transactions on Graphics, 22(3):759–769, July 2003.

[36] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Discrete Differential-Geometry Op-
erators for Triangulated 2-Manifolds. In Gerald Farin, Hans-Christian Hege, David Hoffman, Christo-
pher R. Johnson, Konrad Polthier, Hans-Christian Hege, and Konrad Polthier, editors, Visualization
and Mathematics III, pages 35–57. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. Series Title:
Mathematics and Visualization.

[37] Giacomo Nazzaro, Enrico Puppo, and Fabio Pellacini. geoTangle : Interactive Design of Geodesic Tangle
Patterns on Surfaces. ACM Transactions on Graphics, 41(2):1–17, April 2022.

[38] Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. Large steps in inverse rendering of geometry. ACM
Transactions on Graphics, 40(6):1–13, December 2021.

[39] J. Oliensis. Existence and uniqueness in shape from shading. In [1990] Proceedings. 10th International
Conference on Pattern Recognition, volume i, pages 341–345, Atlantic City, NJ, USA, 1990. IEEE
Comput. Soc. Press.

[40] J. Oliensis. Shape from shading as a partially well-constrained problem. In Proceedings. 1991 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages 559–564, Maui, HI,
USA, 1991. IEEE Comput. Sco. Press.

[41] J. Oliensis. Uniqueness in shape from shading. International Journal of Computer Vision, 6(2):75–104,
June 1991.

[42] Michael Oren and Shree K. Nayar. Generalization of Lambert’s reflectance model. In Proceedings of
the 21st annual conference on Computer graphics and interactive techniques - SIGGRAPH ’94, pages
239–246, Not Known, 1994. ACM Press.

[43] Alex P. Pentland. Local Shading Analysis. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, PAMI-6(2):170–187, March 1984. Conference Name: IEEE Transactions on Pattern Analysis
and Machine Intelligence.

[44] Alex P. Pentland. Linear shape from shading. International Journal of Computer Vision, 4(2):153–162,
March 1990.

73

[45] Ken Perlin. An image synthesizer. ACM SIGGRAPH Computer Graphics, 19(3):287–296, July 1985.

[46] Tsai Ping-Sing and Mubarak Shah. Shape from shading using linear approximation. Image and Vision
Computing, 12(8):487–498, October 1994.

[47] Ulrich Pinkall and Konrad Polthier. Computing Discrete Minimal Surfaces and Their Conjugates. Ex-
perimental Mathematics, 2(1):15–36, January 1993.

[48] E. Prados and O. Faugeras. Shape from Shading: A Well-Posed Problem? In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages 870–877,
San Diego, CA, USA, 2005. IEEE.

[49] Emmanuel Prados and Olivier Faugeras. A Generic and Provably Convergent Shape-from-Shading
Method for Orthographic and Pinhole Cameras. International Journal of Computer Vision, 65(1):97–
125, November 2005.

[50] Emmanuel Prados, Olivier Faugeras, and Elisabeth Rouy. Shape from Shading and Viscosity Solutions.
In Gerhard Goos, Juris Hartmanis, Jan Van Leeuwen, Anders Heyden, Gunnar Sparr, Mads Nielsen,
and Peter Johansen, editors, Computer Vision — ECCV 2002, volume 2351, pages 790–804. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002. Series Title: Lecture Notes in Computer Science.

[51] V. S. Ramachandran. Perception of shape from shading. Nature, 331(6152):163–166, January 1988.
Number: 6152 Publisher: Nature Publishing Group.

[52] Marzia Riso, Giacomo Nazzaro, Enrico Puppo, Alec Jacobson, Qingnan Zhou, and Fabio Pellacini.
BoolSurf: Boolean Operations on Surfaces. ACM Transactions on Graphics, 41(6):1–13, December
2022.

[53] Elisabeth Rouy and Agnès Tourin. A Viscosity Solutions Approach to Shape-From-Shading. SIAM
Journal on Numerical Analysis, 29(3):867–884, 1992. Publisher: Society for Industrial and Applied
Mathematics.

[54] Hiroaki Santo, Masaki Samejima, and Yasuyuki Matsushita. Numerical shape-from-shading revisited.
IPSJ Transactions on Computer Vision and Applications, 10(1):8, June 2018.

[55] Silvia Sellán, Oded Stein, and others. gptyoolbox: A python geometry processing toolbox, 2023.

[56] J. A. Sethian. Fast Marching Methods. SIAM Review, 41(2):199–235, January 1999. Publisher: Society
for Industrial and Applied Mathematics.

[57] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In Proceedings of the fifth Euro-
graphics symposium on Geometry processing, SGP ’07, pages 109–116, Goslar, DEU, 2007. Eurographics
Association.

[58] Oded Stein, Eitan Grinspun, Max Wardetzky, and Alec Jacobson. Natural Boundary Conditions for
Smoothing in Geometry Processing. ACM Transactions on Graphics, 37(2):1–13, April 2018.

[59] Thomas M. Strat. A Numerical Method for Shape-From-Shading From A Single Image. Working Paper,
MIT Artificial Intelligence Laboratory, January 1979. Accepted: 2008-04-02T14:50:55Z.

[60] Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, Brian Whited, Maryann
Simmons, and Olga Sorkine-Hornung. Ink-and-ray: Bas-relief meshes for adding global illumination
effects to hand-drawn characters. ACM Transactions on Graphics, 33(2):1–15, March 2014.

74

[61] Johan Wagemans, Andrea Doorn, and Jan Koenderink. The Shading Cue in Context. i-Perception,
1:159–78, December 2010.

[62] Yu Wang and Justin Solomon. Intrinsic and extrinsic operators for shape analysis. In Handbook of
Numerical Analysis, volume 20, pages 41–115. Elsevier, 2019.

[63] Gregory J. Ward. Measuring and modeling anisotropic reflection. ACM SIGGRAPH Computer Graphics,
26(2):265–272, 1992.

[64] Tino Weinkauf, Yotam Gingold, and Olga Sorkine. Topology-based smoothing of 2D scalar fields with
C1-continuity. In Proceedings of the 12th Eurographics / IEEE - VGTC conference on Visualization,
EuroVis’10, pages 1221–1230, Chichester, GBR, 2010. The Eurographs Association & John Wiley &
Sons, Ltd.

[65] Ying Xiong, Ayan Chakrabarti, Ronen Basri, Steven J. Gortler, David W. Jacobs, and Todd Zick-
ler. From Shading to Local Shape. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(1):67–79, January 2015.

[66] Q. Xu, Y. Gingold, and K. Singh. Inverse toon shading: interactive normal field modeling with isophotes.
In Proceedings of the workshop on Sketch-Based Interfaces and Modeling, SBIM ’15, pages 15–25, Goslar,
DEU, 2015. Eurographics Association.

[67] Qiuying Xu, Songrun Liu, Yotam Gingold, and Karan Singh. Using isophotes and shadows to interac-
tively model normal and height fields. Computers & Graphics, 59:130–142, October 2016.

[68] Shuang Zhao, Wenzel Jakob, and Tzu-Mao Li. Physics-based differentiable rendering: from theory to
implementation. In ACM SIGGRAPH 2020 Courses, SIGGRAPH ’20, pages 1–30, New York, NY, USA,
2020. Association for Computing Machinery.

75

	Couverture
	Résumé
	Abstract
	Contents
	List of terms and abbreviations
	Acknowledgements
	Chapter 1. Introduction
	Chapter 2. Literature Review
	2.1. Geometry Processing
	2.2. Rendering
	2.3. Inverse Rendering
	2.3.1. Classic Shape-From-Shading
	2.3.2. Shape-From-Shading Related Problems

	2.4. 3D Creation

	Chapter 3. Background
	3.1. Method of characteristics for SFS
	3.2. Monster Mash Approach

	Chapter 4. Methodology
	4.1. System Overview
	4.2. Inflation
	4.3. Bounded Band and Impacted Region
	4.4. Localized Shading Interpolation
	4.5. Strip Integration
	4.6. Shape Reconstruction
	4.7. Assembling Layers

	Chapter 5. Results
	Chapter 6. Conclusion
	References

